K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

ab x cb = ddd
b x b = d nên d chỉ có thể là 4; 6 hoặc 9, khi đó b sẽ là 2; 4; 3 hoặc 7
Vì hai thừa số là số có hai chữ số và tích có ba chữ số bằng nhau, nên chữ số hàng chục sẽ bé hơn hàng đơn vị. Vì vậy ta chọn b = 7
Nếu b = 7 và d = 9 ta có:
a7 x c7 = 999
( Ta thấy 7 x 7 = 49, viết 9 nhớ 4. Vậy chọn a là số mà khi nhân 7, cộng thêm 4 rồi cộng thêm ở c x 7 để có kết quả là 9 )
Thế vào phép tính suy ra ta có:
a = 2 và c = 3
27 x 37 = 999
Vậy abcd = 2739

2 tháng 1 2015

ab x cb = ddd 
b x b = d nên d chỉ có thể là 4; 6 hoặc 9, khi đó b sẽ là 2; 4; 3 hoặc 7 
Vì hai thừa số là số có hai chữ số và tích có ba chữ số bằng nhau, nên chữ số hàng chục sẽ bé hơn hàng đơn vị. Vì vậy ta chọn b = 7 
Nếu b = 7 và d = 9 ta có: 
a7 x c7 = 999 
( Ta thấy 7 x 7 = 49, viết 9 nhớ 4. Vậy chọn a là số mà khi nhân 7, cộng thêm 4 rồi cộng thêm ở c x 7 để có kết quả là 9 ) 
Thế vào phép tính suy ra ta có: 
a = 2 và c = 3 
27 x 37 = 999 
Vậy abcd = 2739

31 tháng 10 2016

ab x cb = ddd
b x b = d nên d chỉ có thể là 4; 6 hoặc 9, khi đó b sẽ là 2; 4; 3 hoặc 7
Vì hai thừa số là số có hai chữ số và tích có ba chữ số bằng nhau, nên chữ số hàng chục sẽ bé hơn hàng đơn vị. Vì vậy ta chọn b = 7
Nếu b = 7 và d = 9 ta có:
a7 x c7 = 999
( Ta thấy 7 x 7 = 49, viết 9 nhớ 4. Vậy chọn a là số mà khi nhân 7, cộng thêm 4 rồi cộng thêm ở c x 7 để có kết quả là 9 )
Thế vào phép tính suy ra ta có:
a = 2 và c = 3
27 x 37 = 999
Vậy abcd = 2739

2 tháng 12 2015

ab.cb = ddd = d.111 =(3d).37

b =7; a7.c7 = (3d).37 = 27.37  khi d = 9

a<c

=>a =2 ; c =3

vậy abcd =2739

1 tháng 2 2020

Nguyễn Thành Trương, Vũ Minh Tuấn, Băng Băng 2k6, Trần Thanh Phương, Nguyễn Lê Phước Thịnh, tth,

Nguyễn Văn Đạt, Hồ Bảo Trâm, Lê Thị Thục Hiền, @Akai Haruma, @Nguyễn Việt Lâm

giúp e vs ạ! Cần gấp! Thanks!

2 tháng 2 2020

Bài 1:

Đặt: \(\left\{{}\begin{matrix}A=\overline{abc}\\B=\overline{def}\end{matrix}\right.\left(100\le A;A,B\le999\right)\)

Khi đó ta có: \(999A=\left(A+B\right)\left(A+B-1\right)\)

Vì: \(A\le999\) nên:

\(\Rightarrow\left(A+B\right)\left(A+B-1\right)\le999^2\)

\(\Rightarrow A+B\le999\)

Xét các trường hợp \(A=999\)\(A< 999\) từ đó :

\(\Rightarrow\overline{abcdef}=494209\)

Vậy số cần tìm là: \(494209\)

a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)

b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)

c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)

 

Vì q=a2q=a2 nên ta có : q=1;4,9q=1;4,9

Với q=1q=1 ta có : abcd¯¯¯¯¯¯¯¯¯¯=dcba¯¯¯¯¯¯¯¯¯¯→a=b=c=dabcd¯=dcba¯→a=b=c=d 

Mà abcd¯¯¯¯¯¯¯¯¯¯abcd¯ có dạng bình phương 1 số nguyên nên ta thử với các số có dạng xxxx¯¯¯¯¯¯¯¯¯¯¯=y2 (y∈Z)xxxx¯=y2 (y∈Z). Phương trình này vô nghiệm nên trường hợp này loại.

Với q=4q=4 ta có : abcd¯¯¯¯¯¯¯¯¯¯=4dcba¯¯¯¯¯¯¯¯¯¯abcd¯=4dcba¯

Có d chẵn, a≥9a≥9 nên d=2→a=8;9d=2→a=8;9 

Tiếp tục thử với a=8; a=9a=8; a=9 bằng cách tách số hạng ta không tìm được số nào thỏa mãn.

Với q=9q=9 ta có a=9; d=1a=9; d=1 Tách tương tự không tìm được số nào thỏa mãn.

Nếu có chắc thử sai nhưng hướng làm là thế 

27 tháng 11 2017
kết quả là bằng 7 vì 7 là số mình thích nhất. biết vì sao mình thích số 7 không. vì số 7 là số áo của ronaldo và là tháng mình sinh ra. kết quả là bằng 7 ok. vỗ tay ... vỗ tay

ABDC là hình bình hành

=>\(\overrightarrow{AB}=\overrightarrow{CD};\overrightarrow{AC}=\overrightarrow{BD}\)

A: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\ne\overrightarrow{CB}\)

=>Loại

B: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}\)

\(=\overrightarrow{BA}+\overrightarrow{CB}+\overrightarrow{DC}\)

\(=\overrightarrow{CA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\)<>vecto BC

C: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{AD}\)

=>Loại

D: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{CA}\)

=>Loại

Do đó: Không có đáp án nào đúng

NV
29 tháng 9 2019

\(\frac{100a+10b+c}{a+10b+c}=\frac{100b+10c+a}{b+10c+a}\Leftrightarrow\frac{99a}{a+10b+c}=\frac{99b}{b+10c+a}\Leftrightarrow\frac{a}{a+10b+c}=\frac{b}{b+10c+a}\)

- Nếu \(a=0\Rightarrow b=0\) ngược lại thì hiển nhiên ta có \(\frac{a}{10b+c}=\frac{b}{10c+a}\)

- Nếu a; b đều khác 0

\(\Rightarrow\frac{a+10b+c}{a}=\frac{b+10c+a}{b}\Rightarrow\frac{10b+c}{a}=\frac{10c+a}{b}\Rightarrow\frac{a}{10b+c}=\frac{b}{10c+a}\) (đpcm)

Bài 2 tương tự

\(\frac{10a+11b+c}{a+b}=\frac{10b+11c+a}{b+c}=\frac{10c+11a+b}{c+a}\) (tách \(\frac{10a+11b+c}{a+b}=10+\frac{b+c}{a+b}\) và tương tự, bài 1 cũng vậy nếu em chưa hiểu tại sao lại rút gọn được như dấu tương đương đầu tiên)

\(\Rightarrow\frac{b+c}{a+b}=\frac{c+a}{b+c}=\frac{a+b}{c+a}=\frac{2a+2b+2c}{2a+2b+2c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+c=a+b\\c+a=b+c\\a+b=c+a\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Bài 3: Đề bài thiếu, cần thêm 1 điều kiện gì đó

Em lấy thử \(\left(a;b;c;d\right)=\left(4;1;0;3\right)\) thì rõ ràng thỏa mãn giả thiết (\(0=0\)) nhưng 4 số này sao lập tỉ lệ thức được?

27 tháng 9 2019

Vũ Minh TuấnBăng Băng 2k6tthNguyễn Hoàng NhiNguyễn Thị Diễm Quỳnh@Nk>↑@nguyen thi vangHoàng Tử HàHuyền