Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{a+b+b+c+c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)
\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)
Lại có : \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
+) Nếu \(a+b+c=0\) :
\(\Rightarrow\)\(a+b=-c\)
\(\Rightarrow\)\(b+c=-a\)
\(\Rightarrow\)\(a+c=-b\)
Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được :
\(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
+) Nếu \(a+b+c\ne0\) :
Do đó :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Rightarrow\)\(10a+11b+c=11a+11b\)\(\Rightarrow\)\(c=a\)\(\left(1\right)\)
\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Rightarrow\)\(10b+11c+a=11b+11c\)\(\Rightarrow\)\(a=b\)\(\left(2\right)\)
\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Rightarrow\)\(10c+11a+b=11c+11a\)\(\Rightarrow\)\(b=c\)\(\left(3\right)\)
Từ (1), (2) và (3) suy ra :
\(a=b=c\)
Suy ra :
\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{b+b}{b}.\frac{c+c}{c}.\frac{a+a}{a}=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)
Vậy \(P=-1\) hoặc \(P=8\)
Chúc bạn học tốt ~
Ta có:
\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)
Mà: \(\left\{\begin{matrix}\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{10a+b+10b+c}{a+b}=9a+10b+c\\\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{10b+c+10c+a}{b+c}=9b+10c+a\\\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{10c+a+10a+b}{c+a}=9c+10a+b\end{matrix}\right.\)
\(\Rightarrow9a+10b+c=9b+10c+a=9c+10a+b\)
\(\Rightarrow\left\{\begin{matrix}9a=9b=9c\\10b=10c=10a\\c=a=b\end{matrix}\right.\)\(\Rightarrow a=b=c\)
Vậy \(a=b=c\) (Đpcm)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}-\overline{bc}-\overline{ca}+\overline{ca}+\overline{ab}}{a+b-b-c+c+a}=\frac{2\overline{ab}}{2a}=10+\frac{b}{a}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}-\overline{ca}-\overline{ab}}{a+b+b+c-c-a}=\frac{2\overline{bc}}{2b}=10+\frac{c}{b}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{-\overline{ab}-\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{-a-b+b+c+c+a}=\frac{2\overline{ca}}{2c}=10+\frac{a}{c}\)
=> \(\frac{b}{a}=\frac{c}{b}=\frac{a}{c}\Rightarrow\frac{b+c+a}{a+b+c}=1\Rightarrow a=b=c\)
Với số lượng chữ b ở tử và mẫu như nhau, ta có:
(abbb...b) / (bbb...bc)
= (a/c) . (bb...b / bb...b)
= (a/c) . 1
= a/c (đpcm)
Xin phép được giải bài mà chính bản thân hỏi :v
Có \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\Rightarrow\frac{a}{c}=\frac{10a+b}{10b+c}=\frac{9a+b}{10b}=\frac{9ak+bk}{10bk}\) \(\left(k=11...1\right)\)(n chữ số 1)
\(\Rightarrow\frac{a}{c}=\frac{9a\cdot11...1+b\cdot11...1}{10b\cdot11...1}=\frac{99...9\cdot a+b\cdot11...1}{b\cdot11...10}\) (n chữ số 9)
\(=\frac{\left(100..0-1\right)\cdot a+\overline{bb...b}}{\overline{bb...b0}}\) (n chữ số 0) (n chữ số b)
\(=\frac{\overline{a00...0}-a+\overline{bb...0}}{\overline{bb...b0}}\)
\(=\frac{\overline{a00...0}+\overline{bb...b}}{\overline{bb...b0}+c}=\frac{\overline{abb...b}}{\overline{bb...bc}}\) (đpcm)
\(\frac{100a+10b+c}{a+10b+c}=\frac{100b+10c+a}{b+10c+a}\Leftrightarrow\frac{99a}{a+10b+c}=\frac{99b}{b+10c+a}\Leftrightarrow\frac{a}{a+10b+c}=\frac{b}{b+10c+a}\)
- Nếu \(a=0\Rightarrow b=0\) ngược lại thì hiển nhiên ta có \(\frac{a}{10b+c}=\frac{b}{10c+a}\)
- Nếu a; b đều khác 0
\(\Rightarrow\frac{a+10b+c}{a}=\frac{b+10c+a}{b}\Rightarrow\frac{10b+c}{a}=\frac{10c+a}{b}\Rightarrow\frac{a}{10b+c}=\frac{b}{10c+a}\) (đpcm)
Bài 2 tương tự
\(\frac{10a+11b+c}{a+b}=\frac{10b+11c+a}{b+c}=\frac{10c+11a+b}{c+a}\) (tách \(\frac{10a+11b+c}{a+b}=10+\frac{b+c}{a+b}\) và tương tự, bài 1 cũng vậy nếu em chưa hiểu tại sao lại rút gọn được như dấu tương đương đầu tiên)
\(\Rightarrow\frac{b+c}{a+b}=\frac{c+a}{b+c}=\frac{a+b}{c+a}=\frac{2a+2b+2c}{2a+2b+2c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}b+c=a+b\\c+a=b+c\\a+b=c+a\end{matrix}\right.\) \(\Rightarrow a=b=c\)
Bài 3: Đề bài thiếu, cần thêm 1 điều kiện gì đó
Em lấy thử \(\left(a;b;c;d\right)=\left(4;1;0;3\right)\) thì rõ ràng thỏa mãn giả thiết (\(0=0\)) nhưng 4 số này sao lập tỉ lệ thức được?
Vũ Minh TuấnBăng Băng 2k6tthNguyễn Hoàng NhiNguyễn Thị Diễm Quỳnh@Nk>↑@nguyen thi vangHoàng Tử HàHuyền