chưng minh rằng:
a,( 222^333+333^222) chia hét cho 13
b, ( 36^36- 9^10) chia hết cho 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hằng đẳng thức sau
an−1=(a−1).[an−1+an−2+...+1]=(a−1).pan−1=(a−1).[an−1+an−2+...+1]=(a−1).p (nn là 1 số nguyên dương)
an+1=(a+1).[an−1−an−2+..+1]=(a+1).qan+1=(a+1).[an−1−an−2+..+1]=(a+1).q (nn là 1 số nguyên dương lẻ)
Thay vào ta được như sau:
+) 222333−1=(222−1).p=13.17.p222333−1=(222−1).p=13.17.p
+) 333222+1=(3332)111+1=110889111+1=(110889+1).q=13.8530.q333222+1=(3332)111+1=110889111+1=(110889+1).q=13.8530.q
=>=> 222333+333222=222333−1+333222+1=13(17p+8530q)⋮13222333+333222=222333−1+333222+1=13(17p+8530q)⋮13
Vậy: 222333+333222⋮13222333+333222⋮13 (đpcm)(đpcm)
\(\left(222^{333}+333^{222}\right)⋮13\)
Áp dụng hằng đẳng thức sau
( là 1 số nguyên dương)
( là 1 số nguyên dương lẻ)
Thay vào ta được như sau:
+)
+)
bác nên nhớ là lp 6 chưa hs hđt nhé nên ko đc áp dụng -_-
Chứng minh: a,222^333+333^222 chia hết cho 13
b, 3^105+4^105 chai hết cho 13 nhưng ko chia hết cho 11
a)
Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)
\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)
\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)
\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $222^{333}+333^{222}$ chia hết cho $13.$
b) Ta có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)
\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)
\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $3^{105}+4^{105}$ chia hết cho $13.$
Lại có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)
\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)
Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)
Vậy $3^{105}+4^{105}$ không chia hết cho $11.$
P/s: Rất lâu rồi không giải, không chắc.
Chứng minh: a,222^333+333^222 chia hết cho 13
b, 3^105+4^105 chai hết cho 13 nhưng ko chia hết cho 11