Cho 3 số nguyên tố a,b,c >3 thỏa mãn b=a+d và c=b+d.Cmr d \(⋮\) 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b,c là 3 số nguyên tố >3 ⇒ a,b cùng lẻ ⇒ d=b-a chia hết cho 2 (1)
Vì a,b,c là 3 số nguyên tố >3 ⇒ a,b,c không chia hết cho 3
d chia 3 có số dư là 0,1,2
TH1: d=3k+1 (k∈ N)
Khi đó: b=a+3k+1
c= b+d = a+6k+2
Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 ⇒ c chia hết cho 3 (loại)
Nếu a chia 3 dư 2 thì a+1 chia hết cho 3 ⇒ b chia hết cho 3 (loại)
TH2: d=3k+2 (k∈N)
Khi đó b= a+3k+2
c= a+6k+4=a+1+6k+3
Tương tự như TH1 ⇒ loại
Do đó d chia hết cho 3 (2)
Từ (1),(2) suy ra d chia hết cho 2.3 =6 [ vì (2,3)=1]
Vì a,b,c là 3 số nguyên tố >3 ⇒ a,b cùng lẻ ⇒ d=b-a chia hết cho 2 (1)
Vì a,b,c là 3 số nguyên tố >3 ⇒ a,b,c không chia hết cho 3
d chia 3 có số dư là 0,1,2
TH1: d=3k+1 (k∈ N)
Khi đó: b=a+3k+1
c= b+d = a+6k+2
Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 ⇒ c chia hết cho 3 (loại)
Nếu a chia 3 dư 2 thì a+1 chia hết cho 3 ⇒ b chia hết cho 3 (loại)
TH2: d=3k+2 (k∈N)
Khi đó b= a+3k+2
c= a+6k+4=a+1+6k+3
Tương tự như TH1 ⇒ loại
Do đó d chia hết cho 3 (2)
Từ (1),(2) suy ra d chia hết cho 2.3 =6 [ vì (2,3)=1]
Chúc bạn học tốt ^^