Cho B=3+\(^{3^2}\)+\(^{3^3}\)+....+\(3^{2015}\).Hãy tìm số tự nhiên n, biết rằng 2B+3=\(3^n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
B=3+3^2+3^3+.......+3^200
3B=3(3+3^2+3^3+.......+3^200)
3B= 3^2+3^3+.......+3^200+3^201
-
B=3+3^2+3^3+.......+3^200
2B=3^201-3
2B+3=3^201
Mà đề bài cho 2B+3=3^n
=> n=201
Vậy .........
Ta có:
B=3+3^2+3^3+.......+3^200
3B=3(3+3^2+3^3+.......+3^200)
3B= 3^2+3^3+.......+3^200+3^201
-
B=3+3^2+3^3+.......+3^200
2B=3^201-3
2B+3=3^201
Mà đề bài cho 2B+3=3^n
=> n=201
Vậy .........
Ta có : S = 1 + 3 + 32 + 33 + ...... + 32015
=> 3S = 3 + 32 + 33 + ...... + 32016
=> 3S - S = 32016 - 1
=> 2S = 32016 - 1
=> 2S + 1 = 32016
Vậy 2S + 1 là luỹ thừa của 1 số tự nhiên (đpcm)
\(B=3+3^2+3^3+...+3^{100}\)
\(=>3B=3^2+3^3+...+3^{100}+3^{101}\)
\(3B-B=\left(3^2+3^3+...+3^{100}+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(2B=3^{101}-3\)
Ta có: \(3^{101}-3+3=3^n\)
\(=>3^{101}=3^n\)
\(n=101\)
ta có:
3b= 3^2+3^3+3^4+.......+3^101
3b-b= 3^101-3
vậy 3^n=101
\(B=3+3^2+...+3^{100}\)
=>\(3B=3^2+3^3+...+3^{101}\)
=>\(3B-B=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\)
=>\(2B=3^{101}-3\)
=>\(2B+3=3^{101}\)
=>\(3^n=3^{101}\)
=>n=101
Ta có B=3+3^2+..+3^2010
=>3B=3^2+3^3+..+3^2011
3B-B=3^2111-3
=>2B+3=3^2111-3+3=3^2111
=>3^2011=3^n
=>n=2011
\(B=3+3^2+3^3+...+3^{2010}\)
\(=>3B=3^2+3^3+...+3^{2011}\)
\(=>3B-B=3^{2011}-3\)
\(=>2B=3^{2011}-3\)
Thay vào :\(2B+3=3^n\)
\(=>3^{2011}-3+3=3^n\)
\(=>n=2011\)
Ta có
\(B=3+3^2+3^3+....+3^{2015}\)
\(3B=3^2+3^3+....+3^{2016}\)
\(\Rightarrow3B-B=\left(3^2+3^3+....+3^{2016}\right)-\left(3+3^2+....+3^{2015}\right)\)
\(\Rightarrow2B=3^{2016}-3\)
\(\Rightarrow2B+3=3^{2016}\)
Ta có:
\(B=3+3^2+...+3^{2015}\)
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{2016}\)
\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+...+3^{2016}\right)\)
\(\Rightarrow2B=3^{2016}-3\)
Thay 2B vào \(2B+3=3^n\) ta có:
\(3^{2016}-3+3=3^n\)
\(\Rightarrow3^{2016}=3^n\)
\(\Rightarrow n=2016\)
Vậy n = 2016