Tìm Min của y=\(\sqrt{1-x}+\sqrt{1+x}\) với \(-1\le x\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)
Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)
Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(Y=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
\(Y=\sqrt{1-x}+\sqrt{1+x}\le\frac{1-x+1+1+x+1}{2}=2\)
Dấu "=" xảy ra khi \(x=0\)
ĐKXĐ: \(x\ge1\)
\(3\sqrt[]{x-1}+m\sqrt[]{x+1}=2\sqrt[4]{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow3\sqrt[]{\dfrac{x-1}{x+1}}+m=2\sqrt[4]{\dfrac{x-1}{x+1}}\)
Đặt \(\sqrt[4]{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)
\(\Rightarrow3t^2+m=2t\Leftrightarrow-3t^2+2t=m\)
Xét \(f\left(t\right)=-3t^2+2t\) trên \([0;1)\)
\(f'\left(t\right)=-6t+2=0\Rightarrow t=\dfrac{1}{3}\)
\(f\left(0\right)=0;f\left(\dfrac{1}{3}\right)=\dfrac{1}{3};f\left(1\right)=-1\)
\(\Rightarrow-1< f\left(t\right)\le\dfrac{1}{3}\)
\(\Rightarrow-1< m\le\dfrac{1}{3}\)
Ta có:
\(x\sqrt{y}-y\sqrt{x}=\sqrt{x}\cdot\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\le\sqrt{x}\left(\frac{\sqrt{y}+\sqrt{x}-\sqrt{y}}{2}\right)^2\le\frac{x}{4}\le\frac{1}{4}\)(BĐT AM-GM)
Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x=1\\\sqrt{y}=\sqrt{x}-\sqrt{y}\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)
\(y^2=2+2\sqrt{1-x^2}\)
Do \(\sqrt{1-x^2}\ge0\)
Nên \(y^2\ge2\)
Dấu "=" xảy ra khi :x=1 hoặc x=-1