Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\sqrt{1-x}+\sqrt{1+x}\) \(\left(-1\le x\le1\right)\)
\(=1.\sqrt{1-x}+1.\sqrt{1+x}\)
Áp dụng BĐT Bunhiacopxki, ta có:
\(A=1.\sqrt{1-x}+1.\sqrt{1+x}\)
\(\le\sqrt{\left(1^2+1^2\right).\left(1-x+1+x\right)}=\sqrt{2.2}=2\)
Vậy \(A_{max}=2\), đạt được khi và chỉ khi \(\dfrac{1}{\sqrt{1-x}}=\dfrac{1}{\sqrt{1+x}}\Leftrightarrow1-x=1+x\Leftrightarrow x=0\)
ÁP dụng bất đẳng thức bunyakovsky:
\(P^2=\left(\sqrt{x}\sqrt{x+xy}+\sqrt{y}\sqrt{y+xy}\right)^2\le\left(x+y\right)\left(x+y+2xy\right)=1+2xy\)
Áp dụng bất đẳng thức cauchy: \(xy\le\frac{1}{4}\left(x+y\right)^2=\frac{1}{4}\)
khi đó \(P^2\le1+\frac{1}{2}=\frac{3}{2}\)
\(\Leftrightarrow P\le\sqrt{\frac{3}{2}}\)
đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
anh chi oi giup em cau nay voi:cho x+y=4. tim gtln cua: a=(x-2)y+2017
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
a: Để A<0 thì 2*căn x-4<0
=>căn x<2
=>0<=x<4
=>\(x\in\left\{0;1;2;3\right\}\)
b: \(A-2=\dfrac{2\sqrt{x}-4-2\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{-6}{\sqrt{x}+1}< 0\)
=>A<2
c: A<1
=>A-1<0
=>\(\dfrac{2\sqrt{x}-4-\sqrt{x}-1}{\sqrt{x}+1}< 0\)
=>căn x-5<0
=>0<=x<25
d: A>-1
=>A+1>0
=>\(\dfrac{2\sqrt{x}-4+\sqrt{x}+1}{\sqrt{x}+1}>0\)
=>3*căn x-3>0
=>x>1
e: A<=(-x+6căn x-8)/(căn x+1)
=>2*căn x-4<=-x+6căn x-8
=>x-4căn x+4<=0
=>x=4
\(D=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}\)
\(=\sqrt{2}\)
dấu "=" xảy ra khi: \(\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{4-x}=0\end{cases}\orbr{\begin{cases}x=2\\x=4\end{cases}}}\)
vậy MIN \(D=\sqrt{2}\)
\(D=\sqrt{x-2}+\sqrt{4-x}\le\frac{x-2+1+4-x+1}{2}=4\)
dấu "=" xảy ra khi \(x=3\)
vậy \(MAX:D=4\)
\(D=\sqrt{x-2}+\sqrt{4-x}\)
\(\Rightarrow D^2=x-2+2\sqrt{\left(x-2\right)\left(4-x\right)}+4-x=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
*GTNN
Với 2 ≤ x ≤ 4 => \(2\sqrt{\left(x-2\right)\left(4-x\right)}\ge0\Leftrightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\ge2\)
hay D2 ≥ 2 => D ≥ √2 . Dấu "=" xảy ra <=> x = 2 hoặc x = 4 (tm)
*GTLN
Áp dụng bất đẳng thức AM-GM ta có :
\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\Rightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\le4\)
hay D2 ≤ 4 => D ≤ 2 . Dấu "=" xảy ra <=> x = 3 (tm)
Vậy \(\hept{\begin{cases}Min_D=\sqrt{2}\Leftrightarrow x=2orx=4\\Max_D=2\Leftrightarrow x=3\end{cases}}\)
\(Y=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
\(Y=\sqrt{1-x}+\sqrt{1+x}\le\frac{1-x+1+1+x+1}{2}=2\)
Dấu "=" xảy ra khi \(x=0\)