Tìm GTNN của
A=3x^2-x+4
B=(x-2)(x-5)(x^2-7x-10)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2x\left(x-4\right)-10=2x^2-8x-10\)
\(=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)
\(minB=-18\Leftrightarrow x=2\)
A = x2+ 3x+ 7
=x2 + 2*x*3/2+9/4 + 19/4
=(x+3/2)2 +19/4
ta có (x+3/2)2>0 nên (x+3/2)2+ 19/4>hoặc=19/4
=> AMin khi x+3/2=0
=>x=-3/2
\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)
Dấu \("="\Leftrightarrow x=-5\)
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
A=3x2-x+4
\(=3\left(x^2-\frac{x}{3}+\frac{4}{3}\right)\)
\(=3\left(x-\frac{1}{6}\right)^2+\frac{47}{12}\ge0+\frac{47}{12}=\frac{47}{12}\)
Dấu = khi \(x=\frac{1}{6}\)
Vậy MinA=\(\frac{47}{12}\Leftrightarrow x=\frac{1}{6}\)
B=(x-2)(x-5)(x2-7x-10)
=(x2-7x+10)(x2-7x-10)
Đặt t=x2-7x+10 đc:
B=t(t-20)=t2-20t
=t2-20t+100-100
=(t-10)2-100
Thay t=x2-7x+10 ta đc:
\(B=\left(x^2-7x+10-10\right)-100\ge0-100=-100\)
\(\Rightarrow B\ge-100\)
Dấu = khi \(\left[\begin{array}{nghiempt}x=0\\x=7\end{array}\right.\)
Vậy MinB=-100 khi \(\left[\begin{array}{nghiempt}x=0\\x=7\end{array}\right.\)