K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

xyxy có gạch trên đầu ko Lương Nhất Chi

23 tháng 8 2016

có chứ

 

7 tháng 6 2023

\(\left(x+y\right)^2+xy^2+2y^3=9y^2+8x\)

\(\Leftrightarrow x^2+y^2+2xy+xy^2+2y^3=9y^2+8x\)

\(\Leftrightarrow xy^2+x^2-8y^2-8x+2xy+2y^3=0\)

\(\Leftrightarrow x\left(y^2+x\right)-8\left(y^2+x\right)+2y\left(y^2+x\right)=0\)

\(\Leftrightarrow\left(y^2+x\right)\left(x-8+2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y^2+x=0\\x+2y=8\end{matrix}\right.\)

TH1: \(y^2+x=0\Leftrightarrow x=y=0\), thỏa mãn.

TH2: \(x+2y=8\Rightarrow\left(x;y\right)\in\left\{\left(0;4\right);\left(2;3\right);\left(4;2\right);\left(6;1\right);\left(8;0\right)\right\}\)

Vậy pt đã cho có các cặp nghiệm tự nhiên (x; y) là:

\(\left(x;y\right)\in\left\{\left(0;0\right);\left(0;4\right);\left(2;3\right);\left(4;2\right);\left(6;1\right);\left(8;0\right)\right\}\)

Ta có: \(\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)

\(=\left[x^2\left(x-y\right)+y^2\left(x-y\right)\right]\left(x+y\right)\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=x^4-y^4=2^4-\left(\dfrac{1}{2}\right)^4=16-\dfrac{1}{16}=\dfrac{255}{16}\)

8 tháng 5 2022

a. \(M=-x^4y^4\)

b.\(-\left(2^2\right).\left(-1\right)^2\)=(-2)

8 tháng 5 2022

a)\(M=\left(\dfrac{2}{3}\cdot\left(-\dfrac{3}{2}\right)^2\right).\left(x.x^2\right)\left(y^2.y^2\right)=\dfrac{3}{2}.x^3y^4\)

hệ số : 3/2 

biến :\(x^3y^4\)

b) thay x=2 ; y=-1 và M ta đc

\(M=\dfrac{3}{2}.2^3.\left(-1\right)^4=\dfrac{3}{2}\cdot8.1=\dfrac{24}{2}=12\)

a: \(Q=-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1\)

\(A=x^2y-3x+1-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1=\dfrac{1}{2}x^2y-\dfrac{7}{12}xy^2-3x\)

b: \(P=\dfrac{3}{4}xy^2+\dfrac{4}{9}x-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1=\dfrac{1}{6}xy^2+\dfrac{16}{9}x-\dfrac{1}{2}x^2y-1\)

12 tháng 5 2022

Cảm ơn ạ

AH
Akai Haruma
Giáo viên
7 tháng 1 2022

Đề không đủ. Bạn coi lại.

20 tháng 5 2019

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
$xy^2+2x-y^2=8$

$(xy^2-y^2)+(2x-2)=6$

$y^2(x-1)+2(x-1)=6$

$(y^2+2)(x-1)=6$

Vì $y^2+2\geq 0+2=2$ và $y^2+2, x-1$ là các số nguyên nên ta có bảng sau: