chứng minh rằng biểu thức P = n^3 ( n^2 - 7 )^2 - 36n chia hết cho 7 với mọi số nguyên n
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(P=n^3\left(n^2-7\right)^2-36\)
\(P=n\left[n\left(n^27\right)^2-36\right]\)
\(P=n\left[\left(n^3-7n\right)^2-6^2\right]\)
\(P=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(P=\left(n-3\right)\left(x-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
M luôn luôn chia hết cho 3 , cho 5 , cho 7. Các số này đôi một nguyên tố cùng nhau nên B chia hết cho 105
à 36n mak bn, k p 36 k đâu