K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

Coi trong đây coi:

Cho các số nguyên dương xyz thỏa x2+y2=z2? | Yahoo Hỏi & Đáp

Dài dòng quá nên cũng chưa hiểu lắm. Cố mà đọc

20 tháng 8 2016

mạng có rồi

1 tháng 12 2021

fnf tha

10 tháng 11 2021

\(ax+by+cz\\ =x\left(x^2-yz\right)+y\left(y^2-xz\right)+z\left(z^2-xy\right)\\ =x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Lại có \(a+b+c=x^2+y^2+z^2-xy-yz-xz\)

Vậy ta được đpcm

4 tháng 10 2023

 Do 1 số chính phương khi chia cho 3 chỉ có thể có số dư là 0 hoặc 1 nên nếu \(x,y⋮̸3\) thì \(z^2=x^2+y^2\equiv1+1\equiv2\left[3\right]\), vô lí. Vậy trong 2 số x, y phải tồn tại 1 số chia hết cho 3.

 Tương tự, một số chính phương khi chia cho 4 chỉ có thể có số dư là 0 hoặc 1 nên nếu \(x,y⋮̸4\) thì \(z^2=x^2+y^2\equiv1+1\equiv2\left[4\right]\), vô lí. Vậy trong 2 số x, y phải có 1 số chia hết cho 4.

 Từ 2 điều trên, kết hợp với \(\left(4,3\right)=1\), thu được \(xy⋮3.4=12\). Ta có đpcm.

18 tháng 11 2021

\(x^2=y.z\Rightarrow x^3=x.y.z\\ y^2=x.z\Rightarrow y^3=x.y.z\\ z^2=x.y\Rightarrow z^3=x.y.z\\ \Rightarrow x^3=y^3=z^3\\ \Rightarrow x=y=z\)

NV
17 tháng 12 2020

Với mọi x;y;z ta luôn có:

\(\left(x+y-1\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+2xy-2x-2y+1+z^2-z+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow x^2+y^2+z^2+\dfrac{5}{4}+2xy-2x-2y-z\ge0\)

\(\Leftrightarrow2+2xy-2x-2y\ge z\)

\(\Leftrightarrow2\left(1-x\right)\left(1-y\right)\ge z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\)