K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

Ta có

\(P< \frac{1}{4.5}+\frac{1}{5.6}+......+\frac{1}{99.100}\)

\(\Rightarrow P< \frac{1}{4}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow P< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

\(\Rightarrow P< \frac{1}{4}\left(1\right)\)

\(p>\frac{1}{5^2}+\frac{1}{6.7}+....+\frac{1}{100.101}\)

\(P>\frac{1}{5^2}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(P>\frac{1}{6}+\frac{1}{25}-\frac{1}{101}\)

Ta thấy

\(\frac{1}{25}>\frac{1}{101}\Rightarrow\frac{1}{25}-\frac{1}{101}>0\)

Đặt \(M=\frac{1}{25}-\frac{1}{101}\)

\(\Rightarrow P>\frac{1}{6}+M>\frac{1}{6}\)

\(\Rightarrow P>\frac{1}{6}\left(2\right)\)

Tự (1) và (2)

\(\Rightarrow\frac{1}{6}< p< \frac{1}{4}\)

 

21 tháng 10 2017

neu bot mot canh hinnh vuong di 7 m va bot mot canh khac di 25 m thi duoc mot hinh chu nhat co chieu dai gap 3 lan chieu rong tinh chu vi va dien h hinh vuong

13 tháng 8 2021

Ta có: \(\dfrac{1}{5^2}>\dfrac{1}{5.6};\dfrac{1}{6^2}>\dfrac{1}{6.7};...;\dfrac{1}{100^2}>\dfrac{1}{100.101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{96}{505}>\dfrac{1}{6}\) (1)

Ta có: \(\dfrac{1}{5^2}< \dfrac{1}{4.5};\dfrac{1}{6^2}< \dfrac{1}{5.6};\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\) (2)

Từ (1) và (2)⇒\(\dfrac{1}{6}< B< \dfrac{1}{4}\)

 

 

23 tháng 5 2015

S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)

(*)Ta có:

1/13<1/12

1/14<1/12

1/15<1/12

=>1/13+1/14+1/15<1/12

(*)Ta lại có:

1/61<1/60

1/62<1/60

1/63<1/60

=>1/61+1/62+1/63<1/60

 

=>S<1/5+1/12.3+1/60.3

S<1/5+1/4+1/20

S<1/2

23 tháng 5 2015

S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)

(*)Ta có:

1/13<1/12

1/14<1/12

1/15<1/12

=>1/13+1/14+1/15<1/12

(*)Ta lại có:

1/61<1/60

1/62<1/60

1/63<1/60

=>1/61+1/62+1/63<1/60

 

=>S<1/5+1/12.3+1/60.3

S<1/5+1/4+1/20

S<1/2

30 tháng 4 2015

Nhóm lại từng nhóm rùi so sánh !!!

 

 

 

22 tháng 5 2016

Với mọi k, n Є N+, n ≥ 2 có 1 / (k + 1) + 1 / (k + 2) + ... + 1 / (k + n) < n / (k + 1) 
=> 
1 = 1 
1 / 2 + 1 / 3 < 2 / 2 = 1 
1 / 4 + 1 / 5 + 1 / 6 + 1 / 7 < 4 / 4 = 1 
1 / 8 + ... + 15 < 8 / 8 = 1 
1 / 16 + ... + 1 / 31 < 16 / 16 = 1 
1 / 32 + ... + 1 / 63 < 32 / 32 = 1 
Cộng vế theo vế có 1 + 1 / 2 + ... + 1 / 63 < 6

22 tháng 5 2016

1+1/2+1/3+1/4+...+1/63=1+(1/2+1/3)+(1/4+1/5+1/6+1/7)+(1/8+1/9+...+1/15)+(1/16+1/17+..,+1/31)+(1/32+1/33+...+1/63)

                                             <1+(1/2+1/2)+(1/4+1/4+1/4+1/4)+(1/8+1/8+...+1/8)+(1/16+1/16+...+1/16)+(1/32+1/32+...+1/32)

                                              <1+1+1+1+1+1=6