Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Chia 52 quân cho 6 người, 5 người 7 quân và 1 người 12 quân
- Chọn 7 quân bất kì chia cho người thứ nhất: \(C^7_{52}\) cách.
Sau khi chia cho người thứ nhất, bộ bài còn \(52-7=45\left(quân\right)\)
Lấy 7 trong 45 quân còn lại chia cho người thứ hai: \(C^7_{45}cách\)
Làm tương tự với những người về sau
Vậy, số cách chia thỏa mãn bài toán là: \(C^7_{52}.C^7_{45}.C^7_{38}.C^7_{31}.C^7_{24}.C^{12}_{17}\)
2. 5 người mỗi người 5 quân đỏ 5 quân đen và 1 người 1 quân đỏ 1 quân đen
Trong 52 quân bài có 26 quân đỏ và 26 quân đen
Lấy 5 quân đỏ trong 26 quân đỏ và 5 quân đen trong 26 quân đen cho người thứ nhất: \(C^5_{26}.C^5_{26}cách\)
Sau khi chia xong cho người thứ nhất, bộ bài còn 21 quân đỏ và 21 quân đen
Chia tương tự cho những người về sau
Đến người cuối cùng bộ bài còn 1 quân đỏ và 1 quân đen
Vậy số cách chia bài: \(\left(C^5_{26}.C^5_{26}\right)\left(C^5_{21}.C^5_{21}\right)\left(C^5_{16}.C^5_{16}\right)\left(C^5_{11}.C^5_{11}\right)\left(C^5_6.C^5_6\right)\left(C^1_1.C^1_1\right)\)
Đáp án B
Các phát biểu đúng: 1; 4; 5; 6
2. Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt không thẳng hàng
3. Nếu 1 đường thẳng có 2 điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó
7. Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng đều đúng
a) \(2+4+6+...+2n=n\left(n+1\right)\) (1)
\(n=1\) ta có : \(2=1\cdot\left(1+1\right)\) ( đúng)
Giả sử (1) đúng đến n, ta sẽ chứng minh (1) đúng với n+1
Có \(2+4+6+...+2n+2\left(n+1\right)\)
\(=n\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n+2\right)\)
=> (1) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
b) sai đề nha, mình search google thì được như này =))
\(1^3+3^3+5^3+...+\left(2n-1\right)^2=n^2\left(2n^2-1\right)\) (2)
\(n=1\) ta có : \(1^3=1^2\cdot\left(2-1\right)\) (đúng)
giả sử (2) đúng đến n, tức là \(1^3+3^3+...+\left(2n-1\right)^3=n^2\left(2n^2-1\right)\)
Ta c/m (2) đúng với n+1
Có \(1^3+3^3+...+\left(2n+1\right)^3=n^2\left(2n^2-1\right)+\left(2n+1\right)^3\)
\(=2n^4+8n^3+11n^2+6n+1\)
\(=\left(n^2+2n+1\right)\left(2n^2+4n+1\right)\)
\(=\left(n+1\right)^2\left[2\left(n+1\right)^2-1\right]\) => (2) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
Chia 13 quân cho người thứ nhất: \(C_{52}^{13}\) cách
Còn lại 39 quân, chia 13 quân cho người thứ 2: \(C_{39}^{13}\) cách
Còn lại 26 quân, chia 13 quân cho người thứ 3: \(C_{26}^{13}\) cách
Còn lại 13 quân, chia cho người thứ 4: \(C_{13}^{13}\) cách
\(\Rightarrow C_{52}^{13}.C_{39}^{13}.C_{26}^{13}.C_{13}^{13}\) cách
a) Với n = 1, vế trái chỉ có một số hạng là 2, vế phải bằng = 2
Vậy hệ thức đúng với n = 1.
Đặt vế trái bằng Sn.
Giả sử đẳng thức a) đúng với n = k ≥ 1, tức là
Sk= 2 + 5 + 8 + …+ 3k – 1 =
Ta phải chứng minh rằng cũng đúng với n = k + 1, nghĩa là phải chứng minh
Sk+1 = 2 + 5 + 8 + ….+ 3k -1 + (3(k + 1) – 1) =
Thật vậy, từ giả thiết quy nạp, ta có: Sk+1 = Sk + 3k + 2 = + 3k + 2
= (điều phải chứng minh)
Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*
b) Với n = 1, vế trái bằng , vế phải bằng , do đó hệ thức đúng.
Đặt vế trái bằng Sn.
Giả sử hệ thức đúng với n = k ≥ 1, tức là
Ta phải chứng minh .
Thật vậy, từ giả thiết quy nạp, ta có:
= (điều phải chứng minh)
Vậy theo nguyên lí quy nạp toán học, hệ thức b) đúng với mọi n ε N*
c) Với n = 1, vế trái bằng 1, vế phải bằng = 1 nên hệ thức đúng với n = 1.
Đặt vế trái bằng Sn.
Giả sử hệ thức c) đúng với n = k ≥ 1, tức là
Sk = 12 + 22 + 32 + …+ k2 =
Ta phải chứng minh
Thật vậy, từ giả thiết quy nạp ta có:
Sk+1 = Sk + (k + 1)2 = = (k + 1). = (k + 1)
(đpcm)
Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*
Ta có
\(P< \frac{1}{4.5}+\frac{1}{5.6}+......+\frac{1}{99.100}\)
\(\Rightarrow P< \frac{1}{4}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow P< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(\Rightarrow P< \frac{1}{4}\left(1\right)\)
\(p>\frac{1}{5^2}+\frac{1}{6.7}+....+\frac{1}{100.101}\)
\(P>\frac{1}{5^2}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(P>\frac{1}{6}+\frac{1}{25}-\frac{1}{101}\)
Ta thấy
\(\frac{1}{25}>\frac{1}{101}\Rightarrow\frac{1}{25}-\frac{1}{101}>0\)
Đặt \(M=\frac{1}{25}-\frac{1}{101}\)
\(\Rightarrow P>\frac{1}{6}+M>\frac{1}{6}\)
\(\Rightarrow P>\frac{1}{6}\left(2\right)\)
Tự (1) và (2)
\(\Rightarrow\frac{1}{6}< p< \frac{1}{4}\)