Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thử n=1 là thấy sai đề nha
\(P\left(n\right)=2^2+4^2+...+\left(2n\right)^2=\dfrac{2n\left(n+1\right)\left(2n+1\right)}{3}\) (1)
\(n=1\) ta có: \(P\left(n\right)=2^2=\dfrac{2\cdot2\cdot3}{3}=4\) => (1) đúng với n=1
Giả sử (1) đúng với n tức là \(2^2+4^2+...+\left(2n\right)^2=\dfrac{2n\left(n+1\right)\left(2n+1\right)}{3}\)
Ta sẽ c/m (1) đúng với n+1
Có \(2^2+4^2+...+\left(2n\right)^2+\left(2n+2\right)^2\)
\(=\dfrac{2n\left(n+1\right)\left(2n+1\right)}{3}+4\left(n+1\right)^2\)
\(=\left(n+1\right)\dfrac{2n\left(2n+1\right)+12\left(n+1\right)}{3}=\dfrac{\left[2n+2\right]\left(n+2\right)\left(2n+3\right)}{3}\)
=> (1) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
a/ Đẳng thức bạn ghi nhầm rồi, đây là công thức rất quen thuộc:
\(1^3+2^3+...+n^3=\frac{n^2\left(n+1\right)^2}{4}\)
Với \(n=1;2\) ta thấy đúng
Giả sử đẳng thức cũng đúng với \(n=k\) hay:
\(1^3+2^3+...+k^3=\frac{n^2\left(n+1\right)^2}{4}\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\frac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)
Thật vậy, ta có:
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3\)
\(=\left(k+1\right)^2\left[\frac{k^2}{4}+k+1\right]=\left(k+1\right)^2\left(\frac{k^2+4k+4}{4}\right)\)
\(=\frac{\left(k+1\right)^2\left(k+2\right)^2}{4}\) (đpcm)
b/
Ta thấy đẳng thức đúng với \(n=1;2\)
Giả sử nó cũng đúng với \(n=k\) hay:
\(1+3+...+\left(2k-1\right)=k^2\)
Ta cần chứng minh nó đúng với \(n=k+1\) hay:
\(1+3+...+\left(2k-1\right)+\left(2k+1\right)=\left(k+1\right)^2\)
Thật vậy, ta có:
\(1+3+...+\left(2k-1\right)+\left(2k+1\right)\)
\(=k^2+2k+1=\left(k+1\right)^2\) (đpcm)
Dễ thấy dấu"=" xảy ra khi x=1
Giả sử bđt đúng với n=k>1 tức là
\(3^k\ge2k+1\) (1)
Nhân cả 2 vế của (1) với 3 ta được
\(3^{k+1}\ge6k+3\Leftrightarrow3^{k+1}\ge3k+4+3k-1\)
Vì 3k-1>0
=>\(3^{k+1}\ge3\left(k+1\right)+1\)
Vậy bđt đúng với n=k+1
=> bđt được chứng minh
a) lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)
= lim \(\frac{\left(2-\frac{3}{n}+\frac{5}{n^2}\right)\left(2+\frac{1}{n}\right)}{\left(\frac{4}{n}-3\right)\left(2+\frac{1}{n}+\frac{1}{n^2}\right)}=\frac{4}{-6}=-\frac{2}{3}\)
b)lim ( \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\))
= lim ( \(\frac{n\sqrt{n^4+1}-\sqrt{4n^6+2}}{n^2}\) )
= lim \(\frac{\left(n^6+n^2\right)-\left(4n^6+2\right)}{n^2\left(n\sqrt{n^4+1}+\sqrt{4n^2+2}\right)}\)
= lim \(\frac{-3n^6+n^2+2}{n^3\sqrt{n^4+1}+n^2\sqrt{4n^2+2}}\)
= lim \(\frac{-3n\left(1-\frac{1}{n^4}-\frac{2}{n^6}\right)}{\sqrt{1+\frac{1}{n^4}}+\frac{1}{n^2}\sqrt{4+\frac{2}{n^2}}}\)
= lim \(-3n=-\infty\)
c) lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)
= lim\(\frac{2+\frac{3}{n}}{\sqrt{9+\frac{3}{n^2}}-\sqrt[3]{\frac{2}{n}-8}}=\frac{2}{3+2}=\frac{2}{5}\)
a/ \(lim\left(\sqrt[3]{n-n^3}+n+\sqrt{n^2+3n}-n\right)\)
\(=lim\left(\frac{n}{\sqrt[3]{\left(n-n^3\right)^2}-n\sqrt[3]{\left(n-n^3\right)}+n^2}+\frac{3n}{\sqrt{n^2+3n}+n}\right)\)
\(=lim\left(\frac{1}{\sqrt[3]{n^3+2n+\frac{1}{n}}+\sqrt[3]{n^3-n}+n}+\frac{3}{\sqrt{1+\frac{3}{n}}+1}\right)=0+\frac{3}{1+1}=\frac{3}{2}\)
b/ \(lim\left(\frac{-2\sqrt{n}-4}{\sqrt{n-2\sqrt{n}}+\sqrt{n+4}}\right)=lim\left(\frac{-2-\frac{4}{\sqrt{n}}}{\sqrt{1-\frac{2}{\sqrt{n}}}+\sqrt{1+\frac{4}{n}}}\right)=-\frac{2}{1+1}=-1\)
c/ \(lim\left(\frac{3n^2}{\sqrt[3]{n^6+6n^5+9n^4}+\sqrt[3]{n^6+3n^5}+n^2}\right)=lim\left(\frac{3}{\sqrt[3]{1+\frac{6}{n}+\frac{9}{n^2}}+\sqrt[3]{1+\frac{3}{n}}+1}\right)=\frac{3}{3}=1\)
d/ \(lim\left(\sqrt[3]{n^3+6n}-n+n-\sqrt{n^2-4n}\right)=lim\left(\frac{6n}{\sqrt[3]{n^6+12n^4+36n^2}+\sqrt[3]{n^6+6n^4}+n^2}+\frac{4n}{n+\sqrt{n^2-4n}}\right)\)
\(=lim\left(\frac{6}{\sqrt[3]{n^3+12n+\frac{36}{n}}+\sqrt[3]{n^3+6n}+n}+\frac{4}{1+\sqrt{1-\frac{4}{n}}}\right)=0+\frac{4}{1+1}=2\)
e/ \(lim\left(\frac{-3.3^n+4.4^n}{5.3^n+\frac{3}{2}.4^n}\right)=lim\left(\frac{-3\left(\frac{3}{4}\right)^n+4}{5.\left(\frac{3}{4}\right)^n+\frac{3}{2}}\right)=\frac{0+4}{0+\frac{3}{2}}=\frac{8}{3}\)
f/ \(lim\left(\frac{9^n-5.5^n+7.7^n}{9.3^n+5^n+2.8^n}\right)=lim\left(\frac{1-5.\left(\frac{5}{9}\right)^n+7\left(\frac{7}{9}\right)^n}{9.\left(\frac{1}{3}\right)^n+\left(\frac{5}{9}\right)^n+2.\left(\frac{8}{9}\right)^n}\right)=\frac{1}{0}=+\infty\)
g/ \(lim\left(\frac{6.6^n+3^5.9^n}{3^3.9^n-\frac{1}{2}.4^n}\right)=lim\left(\frac{6\left(\frac{2}{3}\right)^n+3^5}{3^3-\frac{1}{2}\left(\frac{4}{9}\right)^n}\right)=\frac{3^5}{3^3}=9\)
a) \(2+4+6+...+2n=n\left(n+1\right)\) (1)
\(n=1\) ta có : \(2=1\cdot\left(1+1\right)\) ( đúng)
Giả sử (1) đúng đến n, ta sẽ chứng minh (1) đúng với n+1
Có \(2+4+6+...+2n+2\left(n+1\right)\)
\(=n\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n+2\right)\)
=> (1) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
b) sai đề nha, mình search google thì được như này =))
\(1^3+3^3+5^3+...+\left(2n-1\right)^2=n^2\left(2n^2-1\right)\) (2)
\(n=1\) ta có : \(1^3=1^2\cdot\left(2-1\right)\) (đúng)
giả sử (2) đúng đến n, tức là \(1^3+3^3+...+\left(2n-1\right)^3=n^2\left(2n^2-1\right)\)
Ta c/m (2) đúng với n+1
Có \(1^3+3^3+...+\left(2n+1\right)^3=n^2\left(2n^2-1\right)+\left(2n+1\right)^3\)
\(=2n^4+8n^3+11n^2+6n+1\)
\(=\left(n^2+2n+1\right)\left(2n^2+4n+1\right)\)
\(=\left(n+1\right)^2\left[2\left(n+1\right)^2-1\right]\) => (2) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm