Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2+4+6+...+2n=n\left(n+1\right)\) (1)
\(n=1\) ta có : \(2=1\cdot\left(1+1\right)\) ( đúng)
Giả sử (1) đúng đến n, ta sẽ chứng minh (1) đúng với n+1
Có \(2+4+6+...+2n+2\left(n+1\right)\)
\(=n\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n+2\right)\)
=> (1) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
b) sai đề nha, mình search google thì được như này =))
\(1^3+3^3+5^3+...+\left(2n-1\right)^2=n^2\left(2n^2-1\right)\) (2)
\(n=1\) ta có : \(1^3=1^2\cdot\left(2-1\right)\) (đúng)
giả sử (2) đúng đến n, tức là \(1^3+3^3+...+\left(2n-1\right)^3=n^2\left(2n^2-1\right)\)
Ta c/m (2) đúng với n+1
Có \(1^3+3^3+...+\left(2n+1\right)^3=n^2\left(2n^2-1\right)+\left(2n+1\right)^3\)
\(=2n^4+8n^3+11n^2+6n+1\)
\(=\left(n^2+2n+1\right)\left(2n^2+4n+1\right)\)
\(=\left(n+1\right)^2\left[2\left(n+1\right)^2-1\right]\) => (2) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
a) lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)
= lim \(\frac{\left(2-\frac{3}{n}+\frac{5}{n^2}\right)\left(2+\frac{1}{n}\right)}{\left(\frac{4}{n}-3\right)\left(2+\frac{1}{n}+\frac{1}{n^2}\right)}=\frac{4}{-6}=-\frac{2}{3}\)
b)lim ( \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\))
= lim ( \(\frac{n\sqrt{n^4+1}-\sqrt{4n^6+2}}{n^2}\) )
= lim \(\frac{\left(n^6+n^2\right)-\left(4n^6+2\right)}{n^2\left(n\sqrt{n^4+1}+\sqrt{4n^2+2}\right)}\)
= lim \(\frac{-3n^6+n^2+2}{n^3\sqrt{n^4+1}+n^2\sqrt{4n^2+2}}\)
= lim \(\frac{-3n\left(1-\frac{1}{n^4}-\frac{2}{n^6}\right)}{\sqrt{1+\frac{1}{n^4}}+\frac{1}{n^2}\sqrt{4+\frac{2}{n^2}}}\)
= lim \(-3n=-\infty\)
c) lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)
= lim\(\frac{2+\frac{3}{n}}{\sqrt{9+\frac{3}{n^2}}-\sqrt[3]{\frac{2}{n}-8}}=\frac{2}{3+2}=\frac{2}{5}\)
a/ Đẳng thức bạn ghi nhầm rồi, đây là công thức rất quen thuộc:
\(1^3+2^3+...+n^3=\frac{n^2\left(n+1\right)^2}{4}\)
Với \(n=1;2\) ta thấy đúng
Giả sử đẳng thức cũng đúng với \(n=k\) hay:
\(1^3+2^3+...+k^3=\frac{n^2\left(n+1\right)^2}{4}\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\frac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)
Thật vậy, ta có:
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3\)
\(=\left(k+1\right)^2\left[\frac{k^2}{4}+k+1\right]=\left(k+1\right)^2\left(\frac{k^2+4k+4}{4}\right)\)
\(=\frac{\left(k+1\right)^2\left(k+2\right)^2}{4}\) (đpcm)
b/
Ta thấy đẳng thức đúng với \(n=1;2\)
Giả sử nó cũng đúng với \(n=k\) hay:
\(1+3+...+\left(2k-1\right)=k^2\)
Ta cần chứng minh nó đúng với \(n=k+1\) hay:
\(1+3+...+\left(2k-1\right)+\left(2k+1\right)=\left(k+1\right)^2\)
Thật vậy, ta có:
\(1+3+...+\left(2k-1\right)+\left(2k+1\right)\)
\(=k^2+2k+1=\left(k+1\right)^2\) (đpcm)
a. 5 số hạng đầu dãy là:
u1 = 2;
u2 = 2u1 – 1 = 3;
u3 = 2u2 – 1 = 5;
u4 = 2u3 – 1 = 9;
u5 = 2u4 – 1 = 17
b. Chứng minh un = 2n – 1 + 1 (1)
+ Với n = 1 ⇒ u1 = 21 - 1 + 1 = 2 (đúng).
+ Giả sử (1) đúng với n = k ≥ 1, tức là uk = 2k-1 + 1 (1)
Ta chứng minh: uk+1 = 2k + 1. Thật vậy, ta có:
⇒ uk+1 = 2.uk – 1 = 2(2k-1 + 1) – 1 = 2.2k – 1 + 2 – 1 = 2k + 1
⇒ (1) cũng đúng với n = k + 1 .
Vậy un = 2n – 1 + 1 với mọi n ∈ N.
Thử n=1 là thấy sai đề nha
\(P\left(n\right)=2^2+4^2+...+\left(2n\right)^2=\dfrac{2n\left(n+1\right)\left(2n+1\right)}{3}\) (1)
\(n=1\) ta có: \(P\left(n\right)=2^2=\dfrac{2\cdot2\cdot3}{3}=4\) => (1) đúng với n=1
Giả sử (1) đúng với n tức là \(2^2+4^2+...+\left(2n\right)^2=\dfrac{2n\left(n+1\right)\left(2n+1\right)}{3}\)
Ta sẽ c/m (1) đúng với n+1
Có \(2^2+4^2+...+\left(2n\right)^2+\left(2n+2\right)^2\)
\(=\dfrac{2n\left(n+1\right)\left(2n+1\right)}{3}+4\left(n+1\right)^2\)
\(=\left(n+1\right)\dfrac{2n\left(2n+1\right)+12\left(n+1\right)}{3}=\dfrac{\left[2n+2\right]\left(n+2\right)\left(2n+3\right)}{3}\)
=> (1) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm