K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

\(A=\left[\left(3x\right)^3-2.2.3x+2^2\right]+6\)

\(A=\left(3x-2\right)^2+6\)

Ta có

\(\left(3x-2\right)^2\ge0\)

\(\left(3x-2\right)^2+6\ge6\)

Dấu "  =  " xảy ra khi \(3x-2=0\Rightarrow x=\frac{2}{3}\)

Vậy MINA=6 khi x=\(\frac{2}{3}\)

3 tháng 8 2016

\(A=9x^2-12x+10=\left(9x^2-12x+4\right)+6=\left(3x+2\right)^2+6\)

Vì: \(\left(3x+2\right)^2\ge0\) với mọi x

=>\(\left(3x+2\right)^2+6\ge6\)

Vậy GTNN của A là 6 khi \(x=-\frac{2}{3}\)

13 tháng 9 2016

A = 9x2 - 12x + 10

= (3x)2 - 2 . 3x . 2 + 4 + 6

= (3x - 2)2 + 6

(3x - 2)2 lớn hơn hoặc bằng 0

(3x - 2)2 + 6 lớn hơn hoặc bằng 6

Vậy Min A = 6 khi x = 2/3

13 tháng 9 2016

a)\(A=9x^2-12x+10\)

    \(A=\left(3x\right)^2-2.2.3x+2^2+6\)

    \(A=\left(3x-2\right)^2+6\)

           Vì \(\left(3x-2\right)^2\) lớn hơn bằng 0

Suy ra:\(\left(3x-2\right)^2+6\) lớn hơn bằng 6

      Dấu = xảy ra khi 3x-2=0

                                   3x=2

                                    x=\(\frac{2}{3}\)

Vậy Min A=6 khi x=\(\frac{2}{3}\)

29 tháng 9 2016

\(A=\left[\left(3x\right)^3-2.2.3x+2^2\right]+6\)

   \(=\left(3x-2\right)^2+6\)

Ta có : 

\(\left(3x-2\right)^2\ge0\)

\(\Rightarrow\left(3x-2\right)^2+6\ge6\)

Dấu " = " xảy ra khi và chỉ khi \(3x-2=0\)

                                                   \(3x=2\)

                                                     \(x=\frac{2}{3}\)

Vậy \(Min_A=6\Leftrightarrow x=\frac{2}{3}\)

3 tháng 8 2016

\(A=9x^2-12x+10\)

\(=\left(3x\right)^2-2.2.3x+4+6\)

\(=\left[\left(3x\right)^2-2.2.3x-2^2\right]+6\)

\(=\left(3x-2\right)^2+10\)

Ta có :

\(\left(3x-2\right)^2\ge0\)

\(\Rightarrow\left(3x-2\right)^2+6\ge6\)

\(\Rightarrow A\ge6\)

\(\Rightarrow A_{min}=6\Leftrightarrow3x-2=0\rightarrow x=\frac{2}{3}\)

2 tháng 8 2017

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(=\left|1-3x\right|+\left|3x-2\right|\)

\(\ge\left|1-3x+3x-2\right|=\left|-1\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-3x\right)\left(3x-2\right)\ge0\Leftrightarrow\frac{1}{3}\le x\le\frac{2}{3}\)

Vậy \(A_{min}=1\) tại \(\frac{1}{3}\le x\le\frac{2}{3}\)

2 tháng 8 2017

Xin lỗi cậu tớ mới học lớp 7 thôi

2 tháng 10 2023

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

5 tháng 10 2021

\(A=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ A_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

27 tháng 9 2021

\(A=\left(x+3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=-3\\ B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{29}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{29}{4}\ge-\dfrac{29}{4}\\ B_{min}=-\dfrac{29}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ C=\left(9x^2-12x+4\right)+2017=\left(3x-2\right)^2+2017\ge2017\\ C_{min}=2017\Leftrightarrow x=\dfrac{2}{3}\)

7 tháng 8 2016

\(A=-9x^2-12x+4\)

\(=-\left[\left(3x\right)^2+2\times3x\times2+2^2-2^2-4\right]\)

\(=-\left[\left(3x+2\right)^2-8\right]\)

\(\left(3x+2\right)^2\ge0\)

\(\left(3x+2\right)^2-8\ge-8\)

\(-\left[\left(3x+2\right)^2-8\right]\le8\)

Vậy Max A = 8 khi x = \(-\frac{2}{3}\)

7 tháng 8 2016

\(A=-9x^2-12x+4=-\left(9x^2+12x-4\right)=-\left[\left(3x\right)^2+2.2.3x+2^2-8\right]\)

\(=-\left[\left(3x+2\right)^2-8\right]=-\left(3x+2\right)^2+8\)

Do \(\left(3x+2\right)^2\ge0\Rightarrow-\left(3x+2\right)^2\le0\Rightarrow-\left(3x+2\right)^2+8\le8\)

Đẳng thức xảy ra khi: \(3x+2=0\Rightarrow x=\frac{-2}{3}\)

Vậy giá trị lớn nhất của \(-9x^2-12x+4\)là 8 khi \(x=\frac{-2}{3}\)

17 tháng 8 2016

a/ \(2x^2+12x+21=2\left(x^2+6x+9\right)+3=2\left(x+3\right)^2+3\ge3\)

Min = 3 <=> x = -3

b/ \(9x^2-30x+26=9\left(x-\frac{5}{3}\right)^2+1\ge1\)

Min = 1 <=> x = 5/3

17 tháng 8 2016

a)2x2+12x+21

        Ta có:2x2+12x+21=2.(x2+6x+32)+3

                                     =2.(x+3)2+3

      Vì 2.(x+3)2\(\ge\)0

                  Suy ra:2.(x+3)2+3\(\ge\)3

                             Dấu = xảy ra khi x+3=0

                                                         x=-3

Vậy MinA=3 khi x=-3

b)9x2-30x+26

         Ta có:9x2-30x+26=(3x)2-2.15x+52+1

                                      =(3x-5)2+1

    Vì (3x-5)2\(\ge\)0

                 Suy ra:(3x-5)2+1\(\ge\)1

                            Dấu = xảy ra khi 3x-5=0

                                                        3x=5

                                                       x=\(\frac{5}{3}\)

Vậy Min B=1 khi x=\(\frac{5}{3}\)