1) Chứng tỏ nếu a nguyên tố >3 thì a2-1 chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p là số nguyên tố lớn hơn 3
=>p=3k+1;3k+2
xét p=3k+1=>(p-1)(p+1)=(3k+1-1)(3k+1+1)=3k(3k+2) chia hết cho 3 (1)
xét p=3k+2=>(p-1)(p+1)=(3k+2-1)(3k+2+1)=(3k+1)(k+1)3 chia hết cho (2)
từ (1) và (2)=>(p-1)(p+1) chia hết cho 3
p là số nguyên tố >3=>p=2k+1
=>(p-1)(p+1)=(2k+1-1)(2k+1+1)=2k.(2k+2)
=2k.2(k+1)=4k(k+1)
k(k+1) chia hết cho 2=>k(k+1)=2q
=>4k(k+1)=4.2q=8q chia hết cho 8
vì (3;8)=1=>(p-1)(p+1) chia hết cho 24
=>đpcm
Vì a;b nguyên tố >3=> a không chia hết cho 3
=> a2 và b2 chia 3 dư 1 =>a2-b2 chia hết cho 3
Vì a;b là số nguyên tố >3 => a;b lẻ
=> a2 và b2 chia 8 dư 1 => a2-b2 chia hết cho 8
Mà (3;8)=1 nên a2-b2 chia hết cho 24
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3
Ta có :P không chia hết cho 2
=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)
Mặt khác:P không chia hết cho 3
Nếu P= 3k +1 thì P-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3
Tương tự: Nếu P= 3k+2 thì P+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)
Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24
Ta có : (p-1)(p+1) = p2 - 1
Vì p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3. Suy ra : p2 không chia hết cho 3
\(\Rightarrow\)p2 chia 3 dư 1 (Vì p2 là số chính phương)
\(\Rightarrow\)p2 -1 \(⋮\)3
Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 2. Suy ra p-1\(⋮\)2 và p+1\(⋮\)2.
\(\Rightarrow\)(p-1)(p+1) là tích của 2 số tự nhiên liên tiếp
Do đó: (p-1)(p+1) \(⋮\)8
Vì (p-1)(p+1) chia hết cho 3 và 8 nên (p-1)(p+1) \(⋮\)24 (đpcm)
Vì a nguyên tố lớn hơn 3 => a lẻ => a2 chia 8 dư 1 =>a2-1 chia hết cho 8
Vì thế a2 chia 3 cũng dư 1 => a2-1 chia hết cho 3
mà (3;8) =1 =>a2-1 chia hết cho 24
Câu hỏi của Lương Nhất Chi - Toán lớp 6 | Học trực tuyến bấm vào