K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

Ta có

 A \(\in\)Z <=> n+10 chia hết cho 2n+8

           <=> 2n+20 chia hết cho 2n+8

           <=> 2n+20-(2n+8) chia hết cho 2n+8

            <=> 12 chia hết cho 2n+8

            <=> 2n+8 \(\in\) Ư(12)

Mà n là số tự nhiên nên \(2n+8\ge8\)

Ta có \(Ư_{\left(12\right)}=\left(1;2;3;4;12;-1;-2;-3;-4;-6;-12\right)\)

=> 2n+8=12

=> 2n=4

=>n=2

Vậy số cần tìm là 2

Bài 2: 

a: Để E là số nguyên thì \(3n+5⋮n+7\)

\(\Leftrightarrow3n+21-16⋮n+7\)

\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)

b: Để F là số nguyên thì \(2n+9⋮n-5\)

\(\Leftrightarrow2n-10+19⋮n-5\)

\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{6;4;29;-14\right\}\)

24 tháng 9 2023

may ngu nhu cut y dap an la 66

 

24 tháng 9 2023

?

 

5 tháng 5 2023

`A = (n+3)/(n-2)`

Ta có:

`(n+3)/(n-2)`

`=> (n+3)/(n+3-5)`

`=> -5 : n+3` hay `n+3 in Ư(-5)`

Biết: `Ư(-5)={-1;1;-5;5}`

`=> n in{-3;1;3;7}`

5 tháng 5 2023

Ta có:

n + 3 = n - 2 + 5

Để A ∈ Z thì n - 2 ∈ Ư(5) = {-5; -1; 1; 5}

⇒ n ∈ {-3; 1; 3; 7}

17 tháng 5 2022

A ∈ N => 8 : (n - 2) ∈ N => (n - 2) ∈ Ư(8) = {1; 2; 4; 8}; (n - 2) > 0

=> ta có bảng:

n - 21248
n34610

Vậy n ∈ {3; 4; 6; 10}

 

17 tháng 5 2022

Vì AϵN nên 8 : (n-2 ) ϵ N 
=> n-2 ϵ Ư(8)  ϵ{1 ; 2 ; 4; 8 } ; ( n-2 ) > 0 
xét các th 
 

n-2 
410

 

Để A là số tự nhiên thì \(\left\{{}\begin{matrix}8⋮n-2\\n>2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n-2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\\n>2\end{matrix}\right.\)

hay \(n\in\left\{3;4;6;10\right\}\)

`=> n - 2 in Ư(8)`

Ta có: `n in NN => n - 2 >= -2`.

`-> n - 2 in {-1, -2, 1, 2, 4, 8}`

`=> n - 2 in {1, 0, 3, 4, 6, 10}`.

14 tháng 1 2018

a) \(n+1\inƯ\left(n^2+2n-3\right)\)

\(\Leftrightarrow n^2+2n-3⋮n+1\)

\(\Leftrightarrow n\left(n+1\right)+n-3⋮n+1\)

\(n\left(n+1\right)⋮n+1\Rightarrow n-3⋮n+1\)

\(\Leftrightarrow n+1-4⋮n+1\)

\(n+1⋮n+1\Rightarrow-4⋮n+1\Rightarrow n+1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\) \(-2\) \(2\) \(-4\) \(4\)
\(n\) \(-2\) \(0\) \(-3\) \(1\) \(-5\) \(3\)

Vậy...

b) \(n^2+2\in B\left(n^2+1\right)\)

\(\Leftrightarrow n^2+2⋮n^2+1\)

\(\Leftrightarrow n^2+1+1⋮n^2+1\)

\(n^2+1⋮n^2+1\) nên \(1⋮n^2+1\Rightarrow n^2+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n^2+1\) \(-1\) \(1\)
\(n\) \(\sqrt{-2}\) (vô lý, vì 1 số ko âm mới có căn bậc hai)

\(0\) (tm)

Vậy \(n=0\)

c) \(2n+3\in B\left(n+1\right)\)

\(\Leftrightarrow2n+3⋮n+1\)

\(\Leftrightarrow2n+2+1⋮n+1\)

\(\Leftrightarrow2\left(n+1\right)+1⋮n+1\)

\(2\left(n+1\right)⋮n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\)
\(n\) \(-2\) \(0\)

Vậy...

18 tháng 1 2018

a) n+1∈Ư(n2+2n−3)n+1∈Ư(n2+2n−3)

⇔n2+2n−3⋮n+1⇔n2+2n−3⋮n+1

⇔n(n+1)+n−3⋮n+1⇔n(n+1)+n−3⋮n+1

n(n+1)⋮n+1⇒n−3⋮n+1n(n+1)⋮n+1⇒n−3⋮n+1

⇔n+1−4⋮n+1⇔n+1−4⋮n+1

n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}

Ta có bảng sau:

n+1n+1 −1−1 11 −2−2 22 −4−4 44
nn −2−2 00 −3−3 11 −5−5 33

Vậy...

b) n2+2∈B(n2+1)n2+2∈B(n2+1)

⇔n2+2⋮n2+1⇔n2+2⋮n2+1

⇔n2+1+1⋮n2+1⇔n2+1+1⋮n2+1

n2+1⋮n2+1n2+1⋮n2+1 nên 1⋮n2+1⇒n2+1∈Ư(1)={−1;1}1⋮n2+1⇒n2+1∈Ư(1)={−1;1}

Ta có bảng sau:

n2+1n2+1 −1−1 11
nn √−2−2 (vô lý, vì 1 số ko âm mới có căn bậc hai)

00 (tm)

Vậy n=0n=0

c) 2n+3∈B(n+1)2n+3∈B(n+1)

⇔2n+3⋮n+1⇔2n+3⋮n+1

⇔2n+2+1⋮n+1⇔2n+2+1⋮n+1

⇔2(n+1)+1⋮n+1⇔2(n+1)+1⋮n+1

2(n+1)⋮n+12(n+1)⋮n+1 nên 1⋮n+1⇒n+1∈Ư(1)={−1;1}1⋮n+1⇒n+1∈Ư(1)={−1;1}

Ta có bảng sau:

n+1n+1 −1−1 11
nn −2−2 00
14 tháng 11 2016

\(2n-1+5n-2=\frac{7}{32}\)

                   \(7n-3=\frac{7}{32}\)

                           \(7n=\frac{7}{32}+3\)

                           \(7n=\frac{103}{32}\)

                              \(n=\frac{103}{32}:7\)

                              \(n=\frac{103}{224}\)