tìm giá trị nhỏ nhất của biểu thức a=gttđ của x-10 + gttđ của x-3 + gttđ của x-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-1\right|+\left|-x-4\right|+\left|3-x\right|+\left|x+2\right|\\ A\ge\left|x-1-x-4\right|+\left|3-x+x-2\right|=5+1=6\\ A_{min}=6\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x+4\right)\le0\\\left(3-x\right)\left(x+2\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4\le x\le1\\-2\le x\le3\end{matrix}\right.\Leftrightarrow-2\le x\le1\)
tìm giá trị lớn nhất,nhỏ nhất của biểu thức sau
GTTĐ của x+GTTĐ của y+23
GTTĐ của x-1 + GTTĐ 2y+4+2018
A = x2 + (-2xy) - 1/3y3
A = 52 + (-2.5.1) - 1/3.13
A = 25 - 10 - 1/3
A = 44/3
Câu a bn xét a lớn hơn hoặc bằng 5 và nhỏ hơn 5
Câu b ta xét 2 trg hợp x-4=5-2x và x-4=-(5-2x)
Tổng Gttd của hai cái đó lớn hơn hoặc bằng 0 với mọi x,y nên dấu bằng xảy ra khi x+7=0 và2y-10=0
Câu cuối làm tương tự
Chúc bạn học tốt(mình giải ý thôi còn lại bn tự hiểu bởi lẽ bn cần suy nghĩ thêm
\(\left|x-15\right|+\left|2,5-x\right|=0\) (1)
Ta thấy \(\left|x-15\right|\ge0;\left|2,5-x\right|\ge0\)suy ra \(\left|x-15\right|+\left|2,5-x\right|\ge0\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}\left|x-15\right|\\\left|2,5-x\right|\end{cases}\Rightarrow}\hept{\begin{cases}x-15=0\\2,5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=15\\x=2,5\end{cases}}}\)
Vậy ...................