K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2021

\(SH\perp\left(ABC\right)\Rightarrow\widehat{SAH}\) là góc giữa SA và (ABC)

\(SH=\dfrac{a\sqrt{3}}{2}\) (đường trung tuyến trong tam giác đều SBC cạnh a)

\(AH=\dfrac{a\sqrt{3}}{2}\) (đường trung tuyến trong tam giác đều ABC cạnh a)

\(tan\widehat{SAH}=\dfrac{SH}{AH}=1\Rightarrow\widehat{SAH}=45^0\)

1 tháng 12 2017

Đáp án D

Góc giữa cạnh SA và đáy là SAF  ,

Vì tam giác ABC và SBC là tam giác đều cạnh a nên ta có 

A F = 3 2 a ; S F = 3 2 a

Vậy  tan S A F ^ = 1 ⇒ S A G ^ = 45 0

19 tháng 2 2017

 

2 tháng 8 2018

Đáp án A

18 tháng 11 2021

Cho hình chop SABC, có đáy là ABC là tam giác vuông tại B, có độ dài các cạch AB=6,BC=8,SA=10 vuông góc với mặt đáy Tính thể tích khối chóp SABC

1 tháng 1 2019

Chọn A

1 tháng 4 2019

Chọn đáp án A

26 tháng 1 2019

Đáp án A

 

9 tháng 2 2018

18 tháng 4 2016

chứng minh được AH=BH -> SA= SB _> tam giác SAB cân ở S

gọi M là trung điểm của AB  -> SM vuông góc với AB -> góc giữa mp (SAB) và mp (ABC) là góc SMH -> góc SMH = 60 độ 

-> tìm được SH -> tìm được thể tích 

tìm diên tích tam giác SAB -> khoảng cách từ C đến mp (SAB)

Vì I là trung điểm của SC nên khoảng cách từ I đến mp (SAB) bằng một nửa khoảng cách từ C đến mp (SAB)