K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

Điều kiện :  

                 \(\log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\ge0\)

           \(\Leftrightarrow0< \log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\le1\)

           \(\Leftrightarrow\log_51< \log_5\frac{x^2+1}{x+3}\le\log_55\)

\(\Leftrightarrow1< \frac{x^2+1}{x+3}\le5\)\(\Leftrightarrow\begin{cases}\frac{x^2-x-2}{x+3}>0\\\frac{x^2-5x-14}{x+3}\le0\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-3< x< -1\\x>2\end{array}\right.\) và \(\left[\begin{array}{nghiempt}x< -3\\-2\le x\le7\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\2< x\le7\end{array}\right.\)

Vậy tập xác định là D = [-2;-1) U (2;7]

                          

22 tháng 11 2023

d: ĐKXĐ: \(x^2-1< >0\)

=>\(x^2\ne1\)

=>\(x\notin\left\{1;-1\right\}\)

Vậy: TXĐ là D=R\{1;-1}

b: ĐKXĐ: \(2-x^2>0\)

=>\(x^2< 2\)

=>\(-\sqrt{2}< x< \sqrt{2}\)

Vậy: TXĐ là \(D=\left(-\sqrt{2};\sqrt{2}\right)\)

a: ĐKXĐ: \(x-1>0\)

=>x>1

Vậy: TXĐ là \(D=\left(1;+\infty\right)\)

c: ĐKXĐ: \(x^2+x-6>0\)

=>\(x^2+3x-2x-6>0\)

=>\(\left(x+3\right)\left(x-2\right)>0\)

TH1: \(\left\{{}\begin{matrix}x+3>0\\x-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>2\\x>-3\end{matrix}\right.\)

=>x>2

TH2: \(\left\{{}\begin{matrix}x+3< 0\\x-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -3\\x< 2\end{matrix}\right.\)

=>x<-3

Vậy: TXĐ là \(D=\left(2;+\infty\right)\cup\left(-\infty;-3\right)\)

e: ĐKXĐ: \(x^2-2>0\)

=>\(x^2>2\)

=>\(\left[{}\begin{matrix}x>\sqrt{2}\\x< -\sqrt{2}\end{matrix}\right.\)

Vậy: TXĐ là \(D=\left(-\infty;-\sqrt{2}\right)\cup\left(\sqrt{2};+\infty\right)\)

f: ĐKXĐ: \(\sqrt{x-1}>0\)

=>x-1>0

=>x>1

Vậy: TXĐ là \(D=\left(1;+\infty\right)\)

g: ĐKXĐ: \(x^2+x-6>0\)

=>\(\left(x+3\right)\left(x-2\right)>0\)

=>\(\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\)

Vậy: TXĐ là \(D=\left(2;+\infty\right)\cup\left(-\infty;-3\right)\)

14 tháng 5 2016

\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)

Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)

             \(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\)  \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)

              \(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)

              \(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số

26 tháng 3 2016

a) Tập xác định của hàm số là :

\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)

b) Tập xác định của hàm số là :

\(D=\left(1;+\infty\right)\)

c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)

Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)

d) Hàm số xác định khi và chỉ khi

\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)

Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)

14 tháng 5 2016

a. \(y=\left(3^x-9\right)^{-2}\)

Điều kiện : \(3^x-9\ne0\Leftrightarrow3^x\ne3^2\)

                                  \(\Leftrightarrow x\ne2\)

Vậy tập xác định là \(D=R\backslash\left\{2\right\}\)

 

b. \(y=\sqrt{\log_{\frac{1}{3}}\left(x-3\right)-1}\)

Điều kiện : \(\log_{\frac{1}{3}}\left(x-3\right)-1\ge0\Leftrightarrow\log_{\frac{1}{3}}\left(x-3\right)\ge1=\log_{\frac{1}{3}}\frac{1}{3}\)

                                               \(\Leftrightarrow0< x-3\le\frac{1}{3}\)

                                               \(\Leftrightarrow3< x\le\frac{10}{3}\)

Vậy tập xác định \(D=\) (3;\(\frac{10}{3}\)]

 

c. \(y=\sqrt{\log_3\sqrt{x^2-3x+2}+4-x}\)

Điều kiện :

                 \(\log_3\sqrt{x^2-3x+2}+4-x\ge0\Leftrightarrow x^2-3x+2+4-x\ge1\)

                                                                 \(\Leftrightarrow\sqrt{x^2-3x+2}\ge-x-3\)

\(\Leftrightarrow\begin{cases}x-3< 0\\x^2-3x+2\ge0\end{cases}\) hoặc \(\begin{cases}x-3\ge0\\x^2-3x+2\ge\left(x-3\right)^2\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\2\le x< 3\\x\ge3\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\x\ge2\end{array}\right.\)

Vậy tập xác định là : D=(\(-\infty;1\)]\(\cup\) [2;\(+\infty\) )

29 tháng 12 2021

Tìm tập xác định của hàm số:

a) \(y=\frac{3-x}{\sqrt{x-4}}\)

Điều kiện xác định:

\(x-4>0\)

\(\Leftrightarrow x>4\)

\(\Rightarrow\)Tập xác định: \(D=\left(4;+\infty\right).\)

Vậy tập xác định của hàm số là: \(D=\left(4;+\infty\right).\)

b) \(y=\frac{x}{\left(x-1\right)\sqrt{3-x}}\)

Điều kiện xác định:

\(\hept{\begin{cases}x-1\ne0\\3-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\-x>-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x< 3\end{cases}}\)

\(\Rightarrow\)Tập xác định: \(D=\left(-\infty;3\right)\backslash\left\{1\right\}.\)

Vậy tập xác định của hàm số là: \(D=\left(-\infty;3\right)\backslash\left\{1\right\}.\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) • \(y = f\left( x \right) = \frac{1}{{x - 1}}\)

ĐKXĐ: \(x - 1 \ne 0 \Leftrightarrow x \ne 1\)

Vậy hàm số có tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

• \(y = g\left( x \right) = \sqrt {4 - x} \)

ĐKXĐ: \(4 - x \ge 0 \Leftrightarrow x \le 4\)

Vậy hàm số có tập xác định: \(D = \left( { - \infty ;4} \right]\).

b) • Với mọi \({x_0} \in \left( { - \infty ;1} \right)\), ta có:

\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{x - 1}} = \frac{{\mathop {\lim }\limits_{x \to {x_0}} 1}}{{\mathop {\lim }\limits_{x \to {x_0}} x - \mathop {\lim }\limits_{x \to {x_0}} 1}} = \frac{1}{{{x_0} - 1}} = f\left( {{x_0}} \right)\)

Vậy hàm số \(y = f\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( { - \infty ;1} \right)\).

Tương tự ta có hàm số \(y = f\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( {1; + \infty } \right)\).

Ta có: Hàm số không xác định tại điểm \({x_0} = 1\)

\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{x - 1}} =  + \infty ;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{x - 1}} =  - \infty \)

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).

Vậy hàm số \(y = f\left( x \right)\) không liên tục tại điểm \({x_0} = 1\).

• Với mọi \({x_0} \in \left( { - \infty ;4} \right)\), ta có:

\(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {4 - x}  = \sqrt {\mathop {\lim }\limits_{x \to {x_0}} 4 - \mathop {\lim }\limits_{x \to {x_0}} x}  = \sqrt {4 - {x_0}}  = g\left( {{x_0}} \right)\)

Vậy hàm số \(y = g\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( { - \infty ;4} \right)\).

Ta có: \(g\left( 4 \right) = \sqrt {4 - 4}  = 0\)

\(\mathop {\lim }\limits_{x \to {4^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {4^ - }} \sqrt {4 - x}  = \sqrt {\mathop {\lim }\limits_{x \to {4^ - }} 4 - \mathop {\lim }\limits_{x \to {4^ - }} x}  = \sqrt {4 - 4}  = 0 = g\left( 4 \right)\)

Vậy hàm số \(y = g\left( x \right)\) liên tục tại điểm \({x_0} = 4\).

Hàm số không xác định tại mọi \({x_0} \in \left( {4; + \infty } \right)\) nên hàm số \(y = g\left( x \right)\) không liên tục tại mọi điểm \({x_0} \in \left( {4; + \infty } \right)\).

Vậy hàm số \(y = g\left( x \right)\) liên tục trên nửa khoảng \(\left( { - \infty ;4} \right]\).