Tính tổng của n số hạng \(S_n=3+33+333+....\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S_n=3^n-1\)
\(S=2011\left(u_1+...+u_{2010}\right)-\left(u_1+...+u_{2009}\right)-\left(u_1+...+u_{2008}\right)-...-u_1\)
\(=2011S_{2010}-\left(S_{2009}+S_{2008}+...+S_1\right)\)
\(=2011\left(3^{2010}-1\right)-\left(3^{2009}-1+3^{2008}-1+...+3^1-1\right)\)
\(=2011\left(3^{2010}-1\right)-\left(3.\dfrac{3^{2009}-1}{3-1}-2009\right)\)
\(=...\)
a) \({u_2} = {u_1} + d\)
\({u_3} = {u_1} + 2d\)
…
\({u_{n - 1}} = {u_1} + \left( {n - 2} \right)d\)
\({u_n} = {u_1} + \left( {n - 1} \right)d\)
\({S_n} = {u_1} + {u_1} + 2d + \ldots + {u_1} + \left( {n - 2} \right)d + {u_1} + \left( {n - 1} \right)d\)
b) \({S_n} = {u_n} + {u_{n - 1}} + \ldots + {u_2} + {u_1} = {u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d + \ldots + {u_1} + d + {u_1}\)
c) \(2{S_n} = \left( {{u_1} + {u_1} + d + \ldots + {u_1} + \left( {n - 1} \right)d} \right) + \left( {{u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d + \ldots + {u_1}} \right)\).
\( \Rightarrow 2{S_n} = n.\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)
\( \Rightarrow {S_n} = \frac{n}{2}\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)
a) \({u_2} = {u_1}.q\)
\({u_3} = {u_1}.{q^2}\)
…
\({u_{n - 1}} = {u_1}.{q^{n - 2}}\)
\({u_n} = {u_1}.{q^{n - 1}}\)
\({S_n} = {u_1} + {u_1}q + \ldots + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}\)
b) \(q{S_n} = q{u_1} + {u_1}{q^2} + \ldots + {u_1}{q^{n - 1}} + {u_1}{q^n}\)
c) \({S_n} - q{S_n} = \left( {{u_1} + {u_1}q + \ldots + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}} \right) - (q{u_1} + {u_1}{q^2} + \ldots + {u_1}{q^{n - 1}} + {u_1}{q^n})\).
\(\begin{array}{l} \Leftrightarrow \left( {1 - q} \right){S_n} = {u_1} - {u_1}{q^n} = {u_1}\left( {1 - {q^n}} \right)\\ \Rightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\end{array}\)
Nếu cấp số nhân có công bội q = 1 thì cấp số nhân là \(u_1, u_1, ..., u_1,...\) Khi đó
\({S_n} = u_1 + u_1 + ... + u_1 = n . u_1\) (tổng của n số hạng u_1).
Ta có : \(S=3\left(1+11+111+...+11...1\right)\) (n chữ số 1)
\(=3\left(\frac{10-1}{9}+\frac{10^2-1}{9}+....\frac{10^n-1}{9}\right)=\frac{3}{9}\left(10+10^2+....+10^n-n\right)\)
\(=\frac{1}{3}\left(10.\frac{10^n-1}{10-1}-n\right)=\frac{1}{27}\left(10^{n+1}-10-9n\right)\)