K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

Ta có : \(S=3\left(1+11+111+...+11...1\right)\) (n chữ số 1)

               \(=3\left(\frac{10-1}{9}+\frac{10^2-1}{9}+....\frac{10^n-1}{9}\right)=\frac{3}{9}\left(10+10^2+....+10^n-n\right)\)

              \(=\frac{1}{3}\left(10.\frac{10^n-1}{10-1}-n\right)=\frac{1}{27}\left(10^{n+1}-10-9n\right)\)

Tham khảo:

undefined

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

NV
4 tháng 1 2021

\(S_n=3^n-1\)

\(S=2011\left(u_1+...+u_{2010}\right)-\left(u_1+...+u_{2009}\right)-\left(u_1+...+u_{2008}\right)-...-u_1\)

\(=2011S_{2010}-\left(S_{2009}+S_{2008}+...+S_1\right)\)

\(=2011\left(3^{2010}-1\right)-\left(3^{2009}-1+3^{2008}-1+...+3^1-1\right)\)

\(=2011\left(3^{2010}-1\right)-\left(3.\dfrac{3^{2009}-1}{3-1}-2009\right)\)

\(=...\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_2} = {u_1} + d\)

\({u_3} = {u_1} + 2d\)

\({u_{n - 1}} = {u_1} + \left( {n - 2} \right)d\)

\({u_n} = {u_1} + \left( {n - 1} \right)d\)

\({S_n} = {u_1} + {u_1} + 2d +  \ldots  + {u_1} + \left( {n - 2} \right)d + {u_1} + \left( {n - 1} \right)d\)

b) \({S_n} = {u_n} + {u_{n - 1}} +  \ldots  + {u_2} + {u_1} = {u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d +  \ldots  + {u_1} + d + {u_1}\)

c) \(2{S_n} = \left( {{u_1} + {u_1} + d +  \ldots  + {u_1} + \left( {n - 1} \right)d} \right) + \left( {{u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d +  \ldots  + {u_1}} \right)\).

\( \Rightarrow 2{S_n} = n.\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)

\( \Rightarrow {S_n} = \frac{n}{2}\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_2} = {u_1}.q\)

\({u_3} = {u_1}.{q^2}\)

\({u_{n - 1}} = {u_1}.{q^{n - 2}}\)

\({u_n} = {u_1}.{q^{n - 1}}\)

\({S_n} = {u_1} + {u_1}q +  \ldots  + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}\)

b) \(q{S_n} = q{u_1} + {u_1}{q^2} +  \ldots  + {u_1}{q^{n - 1}} + {u_1}{q^n}\)

c) \({S_n} - q{S_n} = \left( {{u_1} + {u_1}q +  \ldots  + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}} \right) - (q{u_1} + {u_1}{q^2} +  \ldots  + {u_1}{q^{n - 1}} + {u_1}{q^n})\).

\(\begin{array}{l} \Leftrightarrow \left( {1 - q} \right){S_n} = {u_1} - {u_1}{q^n} = {u_1}\left( {1 - {q^n}} \right)\\ \Rightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\end{array}\)

9 tháng 4 2017

a) Ta có:

b) Từ câu a) ta dự đoán (1), với mọi n ε N* .

Ta sẽ chứng minh đẳng thức (1) bằng phương pháp quy nạp

Khi n = 1, vế trái là , vế phải bằng . Vậy đẳng thức (1) đúng.

Giả sử đẳng thức (1) đúng với n = ≥ 1, tức là

Ta phải chứng minh nó cũng đúng khi n = k + 1, nh=ghĩa là phải chứng minh

Ta có

=

tức là đẳng thức (1) cũng đúng với n = k + 1.

Vậy điều cần chứng minh đúng với mọi n.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Nếu cấp số nhân có công bội q = 1 thì cấp số nhân là \(u_1, u_1, ..., u_1,...\) Khi đó

\({S_n} = u_1 + u_1 + ... + u_1 = n . u_1\) (tổng của n số hạng u_1).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có:

\({S_n}.q = \left( {{u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}}} \right).q = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}}} \right).q = {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\)

\(\begin{array}{l}{S_n} - {S_n}.q = {u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}} - {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\\ = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}}} \right) - {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\\ = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}} - \left( {q + {q^2} + {q^3} + ... + {q^n}} \right)} \right)\\ = {u_1}\left( {1 - {q^n}} \right)\end{array}\)

b)    Ta có: \({S_n} - {S_n}.q = {u_1}\left( {1 - {q^n}} \right) \Leftrightarrow {S_n}\left( {1 - q} \right) = {u_1}\left( {1 - {q^n}} \right) \Leftrightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{\left( {1 - q} \right)}}\)