Tìm 3 số tự nhiên a,b,c sao cho \(\frac{a}{2011}+\frac{b}{2012}+\frac{c}{2013}\)thì bằng \(\frac{a+b+c}{2011+2012+2013}\)
GIÚP MÌNH ĐI MÀ HU HU HU....Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta sẽ có: \(\frac{a}{2011}+\frac{b}{2012}+\frac{c}{2013}=\frac{a+b+c}{6036}.\)
Suy ra a + b + c = 6036 : 3 = 2012
Ta có: \(\frac{a}{2011}+\frac{b}{2012}+\frac{c}{2013}=\frac{2012}{6036}.\)
tới đây thì mình bí rồi! Bạn tự giải nhé! Ai thấy đúng nhớ tk cho mình
như thế vậy thì tớ cg nghĩ ra rồi, dù sao thì cg cảm ơn bạn đã trả lời câu hỏi của mk
Áp dụng BĐT \(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}>\frac{a+b+c}{a+b+c}=1>\frac{a+b+c}{b+c+d}\).
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2010+2011+2012}>\frac{2010+2011+2012}{2011+2012+2013}\)mà 2010 + 2011 + 2012 < 2011+2012+2013 ,suy ra \(\frac{2010+2011+2012}{2011+2012+2013}< 1\))
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)hay P > Q
Vậy P > Q
b) Áp dụng công thức BCNN (a, b) . UCLN (a,b) = a.b
\(\Rightarrow a.b=420.21=8820\)
Ta có:
\(ab=8820\)
\(a+21=b\Rightarrow b-a=21\)
Hai số cách nhau 21 mà có tích là 8820 là 84 , 105
Mà a + 21 = b suy ra a < b
Vậy a = 84 ; b = 105
a,-Cách khác:
-Ta có: \(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
-Mà: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\left(1\right)\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\left(2\right)\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\left(3\right)\)
\(\Rightarrow P>Q\)
TA CÓ :
\(B=\frac{2010+2011+2012}{2011+2012+2013}\)
\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
=> A > B
VẬY , A > B
Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????
a) Ta có: \(A=\frac{196}{197}+\frac{197}{198}>\frac{196}{197+198}+\frac{197}{197+198}=\frac{196+197}{197+198}=B\)
Vậy A > B
b) Tương tự
Gọi 2011 là a
2012 là b;2013 là c
=>\(A=\frac{2011}{2012}+\frac{2012}{2013}=\frac{a}{b}+\frac{b}{c}\);\(B=\frac{2011+2013}{2012+2013}=\frac{a+c}{b+c}\)
=>\(A=\frac{a}{b}+\frac{b}{c}=\frac{ac+b^2}{bc}\)\(=\frac{\left(ac+b^2\right).\left(b+c\right)}{bc.\left(b+c\right)}\);\(B=\frac{a+c}{b+c}=\frac{\left(a+c\right).bc}{bc.\left(b+c\right)}\)
b+c>a+c;b2+ac>bc
Vậy A>B
\(\frac{a+b+c}{2011+2012+2013}=\frac{a}{2011}+\frac{b}{2012}+\frac{c}{2013}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{2011+2012+2013}=\frac{a+b+c+2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{ac}\right)}{2011+2012+2013}\ge\frac{a+b+c}{2011+2012+2013}\)
=> a =b =c= 0