Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{\frac{3}{4}+\frac{3}{24}+\frac{3}{124}}\) + \(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{127}}{\frac{3}{7}+\frac{3}{17}+\frac{3}{127}}\)
= \(\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{3.\left(\frac{1}{4}+\frac{1}{24}+\frac{1}{124}\right)}\) + \(\frac{2.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{127}\right)}{3.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{127}\right)}\)
= \(\frac{1}{3}\) + \(\frac{2}{3}\) = 1
\(\frac{x+1}{97}+\frac{x+1}{98}=\frac{x+1}{99}+\frac{x+1}{100}\)
\(=>\frac{x+1}{97}+\frac{x+1}{98}-\frac{x+1}{99}-\frac{x+1}{100}=0\)
\(=>\left(x+1\right).\left(\frac{1}{97}+\frac{1}{98}-\frac{1}{99}-\frac{1}{100}\right)=0\)
Vì \(\frac{1}{97}>\frac{1}{98}>\frac{1}{99}>\frac{1}{100}\)
Nên \(\frac{1}{97}+\frac{1}{98}-\frac{1}{99}-\frac{1}{100}\) khác 0
=>x+1=0
=>x=-1
Vậy x=-1
\(\frac{a+b+c}{2011+2012+2013}=\frac{a}{2011}+\frac{b}{2012}+\frac{c}{2013}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{2011+2012+2013}=\frac{a+b+c+2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{ac}\right)}{2011+2012+2013}\ge\frac{a+b+c}{2011+2012+2013}\)
=> a =b =c= 0