Hình vuông ABCD có A(1;-3), B(5;4). Tìm tọa độ các đỉnh còn lại ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét dãy số \(u_n=S_{A_nB_nC_nD_n}\). Ta có \(u_1=a^2\)
Ta xét hình vuông có cạnh \(x\) (diện tích là \(x^2\)). Khi đó nửa độ dài đường chéo của hình vuông này sẽ là \(\dfrac{x}{\sqrt{2}}\). Khi đó diện tích của hình vuông mới là \(\left(\dfrac{x}{\sqrt{2}}\right)^2=\dfrac{x^2}{2}\) bằng 1 nửa diện tích hình vuông ban đầu. Như vậy, ta có mối quan hệ truy hồi: \(u_{n+1}=2u_n\). Dễ thấy đây là một cấp số nhân.
Ta có \(\left(u_n\right):\left\{{}\begin{matrix}u_1=a^2\\u_{n+1}=2u_n\end{matrix}\right.\)
\(\Rightarrow S_n=\sum\limits^{\infty}_{i=1}u_i=a^2\left(\sum\limits^{\infty}_{i=0}\dfrac{1}{2^i}\right)=2a^2\)
(Đẳng thức quen thuộc \(\sum\limits^{\infty}_{i=0}\dfrac{1}{2^i}=2\))
Cho \(S_n=8\) \(\Rightarrow2a^2=8\Leftrightarrow a=2\).
Vậy \(a=2\) thỏa mãn ycbt.
a,Diện tích hình vuông ABCD là:
48 x 3 = 144 (cm2)
Ta có 12 x 12 = 144
Chu vi hình ABCD là
12 x 4 = 48 (cm)
b,Diện tích hình chữ nhật đó là
144 : 9 x 8 = 128(cm2)
Tổng của chiều dài và chiều rộng là
48 : 2 = 24 (cm)
Vậy hai số có tổng là 24 và tích là 128 là 16 và 8
Đáp số:a,48 cm
b,Chiều dài:16
Chiều rộng:8
a) 48cm2 trong đề bài tương ứng với diện tích của phần được mở rộng, gồm chiều dài là chiều dài hình vuông và chiều rộng là 1/3 chiều dài hình vuông. Do đó chiều dài hình vuông nhân với chính nó, hay diện tích hình vuông là:
48 : 1/3 = 144 (cm2)
Vì 12 x 12 = 144 nên chiều dài hình vuông là 12cm.
Chu vi hình vuông là:
12 x 4 = 48 (cm)
b) Diện tích của hình chữ nhật đó là:
144 x 8/9 = 128(cm2)
Nửa chu vi của hình chữ nhật đó là:
48 : 2 = 24 (cm)
Do đó chiều dài và chiều rộng lần lượt là hai số tự nhiên a và b sao cho a + b = 24 và a x b = 128.
Dễ thấy a = 24 - b = 128 : b, suy ra b = 8, a = 24 - 8 = 16.
Vậy chiều dài và chiều rộng của hình chữ nhật đó lần lượt là 16cm và 8cm.
1: CD vuông góc AD
CD vuông góc SA
=>CD vuông góc (SAD)
=>(SCD) vuông góc (SAD)
a) cạnh hình vuông MNPQ là 3x2=6(cm)
Chu vi MNPQ là 4x6=24
b) =1/3 nha
chúc bạn hoc tốt
HYC-25/1/2022
Cạnh hình vuông MNPQ :
2 x 3 = 6 ( cm )
Chu vi MNPQ :
4 X 6 = 24 ( cm )
b. 1/3
HT
Do ABCD là hình vuông \(\Rightarrow AB=d\left(A;BC\right)=\dfrac{\left|0-2.2-1\right|}{\sqrt{1^2+\left(-2\right)^2}}=\sqrt{5}\)
\(\Rightarrow AC=AB\sqrt{2}=\sqrt{10}\)
Do C thuộc BC \(\Rightarrow C\left(2c+1;c\right)\) \(\Rightarrow\overrightarrow{AC}=\left(2c+1;c-2\right)\)
\(\Rightarrow AC^2=\left(2c+1\right)^2+\left(c-2\right)^2=10\)
\(\Leftrightarrow5c^2-5=0\Rightarrow\left[{}\begin{matrix}c=1\\c=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}C\left(3;1\right)\\C\left(-1;-1\right)\end{matrix}\right.\)
Do C có hoành độ dương \(\Rightarrow C\left(3;1\right)\)
N là trung điểm AC \(\Rightarrow N\left(\dfrac{3}{2};\dfrac{3}{2}\right)\)
a]Hình chữ nhật ABCD co16 ovuong.
b]Hình tam giác EDC có 4 ô vuông
c]Số ô vuông ABCD gấp 4 lần số o vuông của tam giác ECD.
đ]số ô vuông của tam giác EDC bằng 1/4 số ô vuông ABCD .
Ta có \(\overrightarrow{AB}\left(4;7\right)\) và \(\left|\overrightarrow{AB}\right|=AB=\sqrt{65}\)
Giả sử tìm được D(x;y), suy ra \(\overrightarrow{AD}=\left(x-1;y+3\right)\)
Do DA=AB và \(DA\perp AB\) nên
\(\begin{cases}4\left(x-1\right)+7\left(y+3\right)=0\\\left(x-1\right)^2+\left(y+3\right)^2=65\end{cases}\)
Giải hệ thu được \(\left(x;y\right)=\left(-6;1\right),\left(8;-7\right)\)
Vậy với D(-6;1) ta thu được C(-2;8);
Với D(8;-7) ta thu được C(12;0)