K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: \(\dfrac{1}{2x^3y}=\dfrac{6yz^3}{12x^3y^2z^3}\)

\(\dfrac{2}{3xy^2z^3}=\dfrac{2\cdot4x^2}{12x^3y^2z^3}=\dfrac{8x^2}{12x^3y^2z^3}\)

a) MTC: \(12x^3y^3\)

\(\dfrac{3}{4x^3y^2}=\dfrac{3\cdot3y}{4x^3y^2\cdot3y}=\dfrac{9y}{12x^3y^3}\)

\(\dfrac{2}{3xy^3}=\dfrac{2\cdot4x^2}{3xy^3\cdot4x^2}=\dfrac{8x^2}{12x^3y^3}\)

b) MTC: \(x\left(x-3\right)^2\)

\(\dfrac{5}{x^2-6x+9}=\dfrac{5}{\left(x-3\right)^2}=\dfrac{5x}{x\left(x-3\right)^2}\)

\(\dfrac{3}{x^2-3x}=\dfrac{3}{x\left(x-3\right)}=\dfrac{3\left(x-3\right)}{x\left(x-3\right)^2}=\dfrac{3x-9}{x\left(x-3\right)^2}\)

12 tháng 11 2017

a)MTC:\(12x^5y^4\)

\(\dfrac{5}{x^5y^3}=\dfrac{5\cdot12y}{x^5y^3\cdot12y}=\dfrac{60y}{12x^5y^4}\)

\(\dfrac{7}{12x^3y^4}=\dfrac{7\cdot x^2}{12x^3y^4\cdot x^2}=\dfrac{7x^2}{12x^5y^4}\)

b)MTC:\(60x^4y^5\)

\(\dfrac{4}{15x^3y^5}=\dfrac{4\cdot4x}{15x^3y^5\cdot4x}=\dfrac{16x}{60x^4y^5}\)

\(\dfrac{11}{12x^4y^2}=\dfrac{11\cdot5y^3}{12x^4y^2\cdot5y^3}=\dfrac{55y^3}{60x^4y^5}\)

21 tháng 4 2017

Giải bài 14 trang 43 Toán 8 Tập 1 | Giải bài tập Toán 8

21 tháng 4 2017

Giải bài 20 trang 44 Toán 8 Tập 1 | Giải bài tập Toán 8

29 tháng 11 2017

Tại sao lại là x+2 và x-2

21 tháng 4 2017

*Muốn quy đồng mẫu thức nhiều phân thức ta làm như sau:

-Phân tích các mẫu thức thành nhân tử rồi tìm ẫu tức chung.

-Tìm nhân tử phụ của mỗi mẫu thức.

-Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

*Bài tập:

\(\dfrac{x}{x^2+2x+1}và\)\(\dfrac{3}{5x^2-5}\)

-Ta có:

x2+2x+1=(x+1)2=(x+1)(x+1)

5x2-5=5(x2-1)=5(x-1)(x+1)

\(\Rightarrow\)MTC:5(x-1)(x+1)(x+1)

-NTP:5(x-1)(x+1)(x+1):(x+1)(x+1)=5(x-1)

5(x-1)(x+1)(x+1):5(x-1)(x+1)=x+1

-Quy đồng mẫu thức:

\(\dfrac{x}{\left(x+1\right)\left(x+1\right)}\)=\(\dfrac{5x\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)\left(x+1\right)}\)

\(\dfrac{3}{5\left(x-1\right)\left(x+1\right)}=\dfrac{3\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)\left(x+1\right)}\)

11 tháng 12 2020

a) \(MTC=a^2x^2b^2\)

\(NTP:a^2x^2b^2:a^2x=xb^2\)

\(a^2x^2b^2:x^2b=a^2b\)

\(a^2x^2b^2:b^2a=ax^2\)

Quy đồng :

\(\dfrac{a+x}{a^2x}=\dfrac{\left(a+x\right)\cdot xb^2}{a^2x.xb^2}=\dfrac{axb^2+x^2b^2}{a^2x^2b^2}\)

\(\dfrac{a+b}{x^2b}=\dfrac{\left(a+b\right)\cdot a^2b}{x^2b\cdot a^2b}=\dfrac{a^3b+a^2b^2}{a^2x^2b^2}\)

\(\dfrac{b+a}{b^2a}=\dfrac{\left(b+a\right)\cdot ax^2}{b^2a\cdot ax^2}=\dfrac{abx^2+a^2x^2}{a^2x^2b^2}\)