cho a,b,c dương thỏa mãn a+b+c=3. chứng minh a^2\(b+2) + b^2\(c+2) + c^2\(a+2) lớn hơn hoặc bằng 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng BĐT Svácxơ, ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c=2\)
Áp dụng bất đẳng thức Cosi, ta có:
\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)Do đó, để chứng minh bất đẳng thức đã cho, ta chỉ cần chứng minh rằng:
\(\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\sqrt{3}\)
Áp dụng bất đẳng thức Côsi lần thứ hai ta nhận được:
\(VT=\frac{\sqrt{a}\sqrt{a\left(1+b+c\right)}+\sqrt{b}\sqrt{b\left(1+c+a\right)}+\sqrt{c}\sqrt{c\left(1+a+b\right)}}{a+b+c}\)
\(\le\frac{\sqrt{\left(a+b+c\right)\left[a\left(1+b+c\right)+b\left(1+c+a\right)+c\left(1+a+b\right)\right]}}{a+b+c}\)
\(=\sqrt{1+\frac{2\left(ab+bc+ca\right)}{a+b+c}}\)
\(\le\sqrt{1+\frac{2\left(a+b+c\right)}{3}}\)
\(\le\sqrt{1+\frac{2\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}=\sqrt{3}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
Lời giải:
a. Áp dụng BĐT Cô-si:
$\frac{1}{a}+\frac{a}{4}\geq 1$
$\frac{1}{b}+\frac{b}{4}\geq 1$
$\frac{1}{c}+\frac{c}{4}\geq 1$
Cộng theo vế:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a+b+c}{4}\geq 3$
$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{6}{4}\geq 3$
$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=2$
b.
Áp dụng BĐT Cô-si:
$\frac{a^2}{c}+c\geq 2a$
$\frac{b^2}{a}+a\geq 2b$
$\frac{c^2}{b}+b\geq 2c$
$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}+(c+a+b)\geq 2(a+b+c)$
$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\geq a+b+c=6$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=2$
Ta có: \(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab}{1+b^2}\)
\(1+b^2\ge2b\) \(\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)\(\Rightarrow-\frac{ab^2}{1+b^2}\ge-\frac{ab}{2}\)
Do đó: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)
Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\); \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Suy ra \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\)
Mặt khác ta có: \(3\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow\frac{3}{a+b+c}\le1\)
\(\Rightarrow a+b+c\ge3\)
Do đó; \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\ge3\)(đpcm)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
Để chứng minh rằng biểu thức abc(1+a^2)(1+b^2)(1+c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3, chúng ta có thể sử dụng bất đẳng thức AM-GM (bất đẳng thức trung bình cộng - trung bình nhân).
Áp dụng bất đẳng thức AM-GM cho a, b, c ta có: (a + b + c)/3 >= (abc)^(1/3)
Vì a + b + c = 3, ta có: 3/3 >= (abc)^(1/3) 1 >= (abc)^(1/3) 1^3 >= abc 1 >= abc
Tiếp theo, chúng ta cần chứng minh rằng (1 + a^2)(1 + b^2)(1 + c^2) <= 8.
Áp dụng bất đẳng thức AM-GM cho (1 + a^2), (1 + b^2), (1 + c^2) ta có: (1 + a^2 + 1 + b^2 + 1 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3)
Vì a^2 + b^2 + c^2 >= 3 (bằng với bất đẳng thức Tchebyshev), ta có: (3 + a^2 + b^2 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) (3 + a^2 + b^2 + c^2)/3 >= (3 + a^2 + b^2 + c^2)/3 1 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) 1^3 >= (1 + a^2)(1 + b^2)(1 + c^2) 1 >= (1 + a^2)(1 + b^2)(1 + c^2)
Từ hai bất đẳng thức trên, ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1 * 1 = 1
Do đó, khi a, b, c là các số dương và a + b + c = 3, ta có abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1, và vì 1 nhỏ hơn hoặc bằng 8, nên ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 8.
Vậy, chúng ta đã chứng minh được rằng biểu thức abc(1 + a^2)(1 + b^2)(1 + c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3.
Áp dụng bất đẳng thức Bunyakovsky cho \(2\) bộ \(3\) số thực \(\left(1+1+1\right)\) và \(\left(a+b+c\right)\). Ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\)
\(\Rightarrow\) \(a^2+b^2+c^2\ge\frac{\frac{9}{4}}{3}=\frac{3}{4}\) \(\left(đpcm\right)\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c=\frac{1}{2}\)
đề sai á? tg ns lăng nhăng lên đây thử xem có ai giải k thôi
\(\dfrac{a^2}{b+2}+\dfrac{b^2}{c+2}+\dfrac{c^2}{a+2}\ge1\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\dfrac{a^2}{b+2}+\dfrac{b^2}{c+2}+\dfrac{c^2}{a+2}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{9}{9}=1\)
Vậy \(\dfrac{a^2}{b+2}+\dfrac{b^2}{c+2}+\dfrac{c^2}{a+2}\ge1\) ( đpcm )