Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a, -9 \(\le\)x\(\le\)8
\(\Rightarrow\)x \(\in\){-9, -8, -7, ..., -1, 0, 1, 2,,...., 8}
tổng các giá trị của x là: (-9) + (-8) + (-7 )+ ... + (-1 )+ 0 + 1 +2 +....+ 8
= (-9) + [(-8) +8] + [(-7 ) + 7] + ....+ [ -1 +1] +0
= -9 +0+0+0....+0
= -9
các câu sau làm tương tự
bài 2 ;
các câu a, b tương tự.
c, |x|< 7
suy ra - 7 < x< 7
làm tương tự
a # b # c # a,thoan man a/(b-c)+b/(c-a)+c/(a-b)=0
<=> a(c-a)(a-b)+b(a-b)(b-c)+c(b-c)(c-a)=0
<=>-a(a-n)(a-c)-b(b-a)(b-c)+c(c-a)(c-b)(c-b)=0
<=>a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)=0 (*)
Tu (*)ta thay a,b,c doi xung nen ko giam tinh tong quat gia su :a>b>c
Nếu a,b,c đều ko âm ,giả thiết trên thành a>b>c>hoặc=0
(*)<=>(a-b)(a^2 - ac - b^2 +bc)+c(c-a)(c-b)=0
<=>(a-b)[(a+b)(a-b)- c(a-b)]+c(c -a)(c-b)=0
<=>(a-b)^2.(a+b-c)+c(a-c)(b-c)=0 (**)
Thấy b- c > 0 (do b > c)và a > 0 =>a+b-c > 0 =>(a-b)^2 . (a+b-c)>0 va c(a-c)(b-c)>hoac = 0
=>(a-b)^2.(a+b-c)+c(a-c)(b-c)>0 mâu thuẫn với (**)
Vay c < 0 (noi chung la trong a,b,c phai co so am )
Nếu cả a,b,c đều không có số dương do giả thiết trên ta có :0 > hoac = a > hoac = b>hoac = c
(*)<=>a(a-b)(a-c)+(b-c)(b^2-ab-c^2 + ca)=0
<=>a(a-b)(a-c)+(b-c)[(b+c)(b-c)-a(b-c)]=0
<=>a(a-b)(a-c)+(b-c)^2.(b+c-a)=0 (***)
a-b > 0 ;a- c > 0 => a(a-b)(a-c)< hoac = 0 (vi a < hoac = 0)
Và b<0 ; c -a < 0 => b+ c -a < 0=>(b-c)^2.(b+c-a)<0
=> a(a-b)(a-c)+(b-c)^2.(b+c-a)<0 mâu thuẫn với (***)
Chứng tỏ trong a,b,c phải có số dương
Tóm lại trong 3 số a,b,c phải có số dương và âm .
câu 1: cạnh nào cũng nhỏ hơn 60
câu 2: số nguyên dương nào chẳng được
trong 3 số thực dương a , b ,c luôn tồn tại 2 số bé hơn hoặc lớn hơn 1
(1 - a) (1 - b) \(\ge\)0 = 1(1 - b) . a(1 - b) = ab - a - b + 1
=> ab \(\ge\)a + b - 1 (đổi dấu)
=> 2c(ab) \(\ge\)2c(a + b - 1) = 2abc \(\ge\)2ac + 2bc - 2c
a^2 + b^2 + c^2 + 1 + 2abc \(\ge\)a^2 + b^2 + c^2 + 1 + 2ac + 2bc - 2c
2(ab + bc + ca) = 2ab + 2bc + 2ca
=> (a^2 + b^2 + c^2 + 2ca + 2bc - 2c + 1) - 2(ab + bc + ca) = (a^2 + b^2 - 2ab) + (c^2 - 2c +1) + (2ca + 2cb - 2cb - 2ca) =(a^2 + b^2 - 2ab) + (c^2 - 2c +1) = (aa + bb - ab - ab) + (cc - 2c + 1) = [a(a - b) + b(b - a)] + [c(c - 2) + 1] = (a - b)^2 + (c - 1)^2 \(\ge\)0 (khi a = b = c = 1)
vì a^2 + b^2 + c^2 + 2ca + 2bc - 2c + 1 \(\ge\)2 (ab+bc+ca)
mà a^2 + b^2 + c^2 + 2abc + 1 \(\ge\)a^2 + b^2 + c^2 + 2ca + 2bc - 2c + 1
nên a^2 + b^2 + c^2 + 2abc + 1 \(\ge\)2(ab + bc + ca)
Để chứng minh rằng biểu thức abc(1+a^2)(1+b^2)(1+c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3, chúng ta có thể sử dụng bất đẳng thức AM-GM (bất đẳng thức trung bình cộng - trung bình nhân).
Áp dụng bất đẳng thức AM-GM cho a, b, c ta có: (a + b + c)/3 >= (abc)^(1/3)
Vì a + b + c = 3, ta có: 3/3 >= (abc)^(1/3) 1 >= (abc)^(1/3) 1^3 >= abc 1 >= abc
Tiếp theo, chúng ta cần chứng minh rằng (1 + a^2)(1 + b^2)(1 + c^2) <= 8.
Áp dụng bất đẳng thức AM-GM cho (1 + a^2), (1 + b^2), (1 + c^2) ta có: (1 + a^2 + 1 + b^2 + 1 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3)
Vì a^2 + b^2 + c^2 >= 3 (bằng với bất đẳng thức Tchebyshev), ta có: (3 + a^2 + b^2 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) (3 + a^2 + b^2 + c^2)/3 >= (3 + a^2 + b^2 + c^2)/3 1 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) 1^3 >= (1 + a^2)(1 + b^2)(1 + c^2) 1 >= (1 + a^2)(1 + b^2)(1 + c^2)
Từ hai bất đẳng thức trên, ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1 * 1 = 1
Do đó, khi a, b, c là các số dương và a + b + c = 3, ta có abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1, và vì 1 nhỏ hơn hoặc bằng 8, nên ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 8.
Vậy, chúng ta đã chứng minh được rằng biểu thức abc(1 + a^2)(1 + b^2)(1 + c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3.