Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(a,b\) là các số dương \(\Leftrightarrow\dfrac{a}{b}>0\)
Không giảm tính tổng quát
Ta giả sử \(a\ge b\Leftrightarrow a=b+m\left(m\ge0\right)\)
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}\)
\(=1+\dfrac{m}{b}+\dfrac{b}{b+m}\ge1+\dfrac{m}{b+m}+\dfrac{b}{b+m}\)
\(=1+\dfrac{m+b}{b+m}=1+1=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\a=b\end{matrix}\right.\)
Vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) (Đpcm)
Nhận xét:
Trong một BĐT có chứa chữ, nếu các chữ \(a\) và \(b\) có vai trò như nhau, ta có thể thay \(a\) bởi \(b\); \(b\) bởi \(a\), do đó ta có thể sắp thú tự tùy ý cho nên trong cách giải trên ta đã giả sử \(a\ge b\) mà không sợ mất tính tổng quát.
Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức và khi đó ta được:
\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\)
\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\)
\(\Rightarrow\)Ta cần chỉ ra được:
\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\ge\frac{a^3+b^3+c^3}{3}\)
Hay: \(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
Dễ thấy: \(a^3+b^3\ge ab\left(a+b\right);b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)
Cộng theo vế các bất đẳng thức trên ta được:
\(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
Vậy bất đẳng thức đã được chứng minh.
cho phân số dương\(\frac{a}{b}\). Chứng Minh rằng:\(\frac{a}{b}\)+\(\frac{b}{a}\)lớn hơn hoặc bằng 2
a: A={4;6;8;10;12;14}
b: B={2;3;4;...;15}
c: \(A\subset B\)
Này m đk lm đề này ak , t bh mới đk cô cho lm . Mẹ khó vãi , mỗi câu đầu m hỏi t làm đk thôi
Bài 1 :
Từ \(\frac{1}{4}< \frac{1}{3}\) suy ra \(\frac{1}{4}< \frac{1+1}{4+3}< \frac{1}{3}\) hay \(\frac{1}{4}< \frac{2}{7}< \frac{1}{3}\)
Từ \(\frac{1}{4}< \frac{2}{7}\)suy ra \(\frac{1}{4}< \frac{1+2}{4+7}< \frac{1}{3}\)hay \(\frac{1}{4}< \frac{3}{11}< \frac{1}{3}\)
Từ \(\frac{2}{7}< \frac{1}{3}\)suy ra \(\frac{2}{7}< \frac{2+1}{7+3}< \frac{1}{3}\)hay \(\frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Vậy ta có : \(\frac{1}{4}< \frac{3}{11}< \frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Chúc bạn học tốt ( -_- )
Bài 2 :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\left(1\right)\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\left(2\right)\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+a}\left(3\right)\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\left(4\right)\)
Cộng ( 1 ), ( 2 ) , (3 ) và ( 4 ) theo từng vế ta được :
\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}\)\(+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}\)
Chúc bạn học tốt ( -_- )
trong 3 số thực dương a , b ,c luôn tồn tại 2 số bé hơn hoặc lớn hơn 1
(1 - a) (1 - b) \(\ge\)0 = 1(1 - b) . a(1 - b) = ab - a - b + 1
=> ab \(\ge\)a + b - 1 (đổi dấu)
=> 2c(ab) \(\ge\)2c(a + b - 1) = 2abc \(\ge\)2ac + 2bc - 2c
a^2 + b^2 + c^2 + 1 + 2abc \(\ge\)a^2 + b^2 + c^2 + 1 + 2ac + 2bc - 2c
2(ab + bc + ca) = 2ab + 2bc + 2ca
=> (a^2 + b^2 + c^2 + 2ca + 2bc - 2c + 1) - 2(ab + bc + ca) = (a^2 + b^2 - 2ab) + (c^2 - 2c +1) + (2ca + 2cb - 2cb - 2ca) =(a^2 + b^2 - 2ab) + (c^2 - 2c +1) = (aa + bb - ab - ab) + (cc - 2c + 1) = [a(a - b) + b(b - a)] + [c(c - 2) + 1] = (a - b)^2 + (c - 1)^2 \(\ge\)0 (khi a = b = c = 1)
vì a^2 + b^2 + c^2 + 2ca + 2bc - 2c + 1 \(\ge\)2 (ab+bc+ca)
mà a^2 + b^2 + c^2 + 2abc + 1 \(\ge\)a^2 + b^2 + c^2 + 2ca + 2bc - 2c + 1
nên a^2 + b^2 + c^2 + 2abc + 1 \(\ge\)2(ab + bc + ca)