Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A={4;6;8;10;12;14}
b: B={2;3;4;...;15}
c: \(A\subset B\)
trong 3 số thực dương a , b ,c luôn tồn tại 2 số bé hơn hoặc lớn hơn 1
(1 - a) (1 - b) \(\ge\)0 = 1(1 - b) . a(1 - b) = ab - a - b + 1
=> ab \(\ge\)a + b - 1 (đổi dấu)
=> 2c(ab) \(\ge\)2c(a + b - 1) = 2abc \(\ge\)2ac + 2bc - 2c
a^2 + b^2 + c^2 + 1 + 2abc \(\ge\)a^2 + b^2 + c^2 + 1 + 2ac + 2bc - 2c
2(ab + bc + ca) = 2ab + 2bc + 2ca
=> (a^2 + b^2 + c^2 + 2ca + 2bc - 2c + 1) - 2(ab + bc + ca) = (a^2 + b^2 - 2ab) + (c^2 - 2c +1) + (2ca + 2cb - 2cb - 2ca) =(a^2 + b^2 - 2ab) + (c^2 - 2c +1) = (aa + bb - ab - ab) + (cc - 2c + 1) = [a(a - b) + b(b - a)] + [c(c - 2) + 1] = (a - b)^2 + (c - 1)^2 \(\ge\)0 (khi a = b = c = 1)
vì a^2 + b^2 + c^2 + 2ca + 2bc - 2c + 1 \(\ge\)2 (ab+bc+ca)
mà a^2 + b^2 + c^2 + 2abc + 1 \(\ge\)a^2 + b^2 + c^2 + 2ca + 2bc - 2c + 1
nên a^2 + b^2 + c^2 + 2abc + 1 \(\ge\)2(ab + bc + ca)
GỌI A LÀ TẬP HỢP DÃY SỐ ĐÓ
TA CÓ \(A\in\hept{4;5;6;7]}\)
XIN TIICK
a) /x-2/ nhỏ hơn hoặc bằng 2
vì /a/ \(\ge\)0
mà /x-2/\(\le\)2
\(\Rightarrow\)/x-2/={0;1;2}
Nếu /x-2/=0
x-2 =0
\(\Rightarrow\)x=2
Nếu /x-2/=1
x-2 =1
\(\Rightarrow\)x=3
Nếu /x-2/=2
x-2 =2
\(\Rightarrow\)x=4
Vì x\(\in\)Z nên x={2;3;4}
b) /x-3/ nhỏ hơn hoặc bằng 0
Vì /a/\(\ge\)0
mà /x-3/\(\le\)0
nên /x-3/=0
x-3 =0
\(\Rightarrow\)x=3
1) Giải theo cách lớp 8 nhé:
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng.
(x + y)² >= 4xy
(y + z)² >= 4yz
(x + z)² >= 4xz
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z²
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0)
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0.
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*)
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0
<=> a - b + b - c + c - a = 0
<=> 0 = 0 (1)
ab-ba
=(10a+b)-(10b+a)=10a+b-10b-a=(10a-a)+(b-10b)=9a-9b=9(a-b)
=>ab-ba luôn chia hết cho 9