Chứng minh (32n+2 + 26n+1) chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề xem chứ mình thay \(n=3,4,5,6\) đều không thỏa.
Đặt A (n) = 33n+3 - 26n - 27
A(1) = 676 chia hết cho 169
Giả sử A(n) chia hết cho 169 . ta cần chứng minh A (n +1) chia hết cho 169
Xét hiệu A(n +1) - A (n) = 33n+6 - 26(n +1) - 27 - 33n+3 + 26n + 27 = 33n+3. (33 - 1) - 26 = 26. (33n+3 - 1)
Đặt B (n) = 33n+3 - 1. ta chứng minh B(n) chia hết cho 13
Có B(1) chia hết cho 13
Giả sử B(n) chia hết cho 13
Xét hiệu B(n+1) - B(n) = 33n+6 - 1 - 33n+3 + 1 = 33n+3. (33 - 1) = 26.33n+3 chia hết cho 13 (do 26 chia hết cho 13)
=> B (n + 1) chia hết 13
Vậy B(n) chia hết cho 13
=> A(n +1) - A (n) = 2.13.13. k = 169.k' => A(n +1) - A (n) chia hết cho 169 mà A (n) chia hết cho 169
=> A (n+1) chia hết cho 169
=> ĐPCM
Tách ra