K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

Chọn B

28 tháng 9 2019

Chọn B

17 tháng 2 2019

D là giao điểm của hai đường trực của hai cạnh AB và AC nên D là giao của ba đường trung trực trong tam giác ABC

Suy ra D thuộc đường trung trực của đoạn thẳng BC (1)

Lại có M là trung điểm của BC nên AM là trung tuyến của tam giác ABC cân tại A

Do đó AM là đường trung trực của BC (trong tam giác cân, trung tuyến tại đỉnh đồng thời cũng là đường trung trực ứng với đáy) (2)

Từ (1) và (2) suy ra A, D, M thẳng hàng nên A đúng.

Do tam giác ABC cân nên giao điểm D của ba đường trung trực của tam giác ABC không thuộc các đường thẳng AB, AC, BC nên B, C, D sai.

Chọn đáp án A

Vì các đường trung trực của `\Delta ABC` cắt nhau tại điểm O

`->` `\text {AO}` là đường trung trực thứ `3` của `\Delta`

Xét các đáp án trên `-> D.`

loading...

4 tháng 3 2016

130 độ bạn nhé

4 tháng 3 2016

130 độ bn nhé

19 tháng 3 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Vì AC là đường trung trực của BB'

Suy ra: CB’ =CB ( tính chất đường trung trực)

Do đó,tam giác CBB’ là tam giác cân tại C. Có CA là đường trung trực của BB’ nên đồng thời là đường phân giác nên có ∠C1= ∠C2.

+) Vì AB là đường trung trực của CC' nên BC = BC’.

Suy ra, tam giác BCC’ cân tại B. Lại có BA là đường trung trực nên đồng thời là đường phân giác (tính chất tam giác cân).

Suy ra: ∠B1 = ∠B2 .

+) Ta có: AB, AC lần lượt là đường phân giác của các góc A'BC và góc A'CB; hai đường này cắt nhau tại A.

Vậy ba đường phân giác của tam giác A'BC đồng quy tại A, hay A là điểm nằm trong tam giác A'BC và cách đều ba cạnh của tam giác này.

14 tháng 5 2022

giúp mình nhanh với , với vẽ hình cho mình luôn nha cảm ơn trước 

 

14 tháng 5 2022

trả lời nhanh cho mình nha mình cảm ơn trước

 

9 tháng 6 2020

Câu 1.

Gọi DI là trung trực BC

Xét ΔBIDvà ΔCID:

IDchung

\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)

BD = CD(như trên)

⇒ΔBID = ΔCID (c.g.c )

\(\widehat{IBD}=\widehat{C}\)(2gtu)

\(\widehat{B}-\widehat{C}\) = 40

hay \(\widehat{B}-\widehat{IBD}\) = 40

\(\widehat{IBD}+\widehat{ABI}=B\)

\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)