K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

a

29 tháng 10 2017

sai rồi B

10 tháng 5 2017

gọi 1/41+1/42+1/43+...+1/79+1/80 là A

ta có:1/41>1/60,1/42>1/60,1/43>1/60,...,1/60=1/60

=>1/41+1/42+1/43+...+1/60>1/60

         1/61>1/80,..................................,1/80=1/80

=>1/61+1/62+............+1/80>1/80

=>1/41+1/42+1/43+...+1/79+1/80>1/60+1/80

lại có 7/12=1/4+1/3

         1/60.20=1/3 và 1/80.20=1/4

=>1/41+1/42+1/43+...+1/79+1/80>1/3+1/4

=>1/41+1/42+1/43+...+1/79+1/80>7/12

9 tháng 5 2019

Sao k có ai giúp mk hết vậy >:((, thôi để mk tự giúp mk vậy :>. E mới nghĩ ra cách này có gì sai anh giúp đỡ.

Cách 1 - Ta có :

\(A=\frac{1}{1.2}+\frac{1}{1.3}+\frac{1}{1.4}+...+\frac{1}{3.2}+\frac{1}{3.3}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

\(\Rightarrow A=\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

Mà \(\frac{5}{6}>\frac{2}{3}\Rightarrow\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}>\frac{2}{3}\)

\(\Leftrightarrowđpcm\)

11 tháng 5 2019

~ Nguyệt ~:Đúng rồi nha em.

Anh nghĩ em nên trích ra các số quy luật, sau đó tính tổng rồi so sánh.

Như thế bài làm của em sẽ hay hơn.

4 tháng 3 2018

ko bít

13 tháng 4 2024

sai đề

24 tháng 3 2018

A có tổng cộng 49 số hạng, nhóm 2 số hạng liên tiếp với nhau được: 

\(A=\left(\frac{1}{1.3}-\frac{2}{3.5}\right)+\left(\frac{3}{5.7}-\frac{4}{7.9}\right)+...+\left(\frac{47}{93.95}-\frac{48}{95.97}\right)+\frac{49}{97.99}\)

\(A=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{93.97}+\frac{49}{97.99}\)=> \(4A=\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{93.97}+\frac{196}{97.99}=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{93}-\frac{1}{97}+\frac{196}{97.99}\)

=> \(4A=1-\frac{1}{97}+\frac{196}{97.99}=\frac{96}{97}+\frac{196}{97.99}=\frac{9700}{97.99}=\frac{100}{99}>1\)

\(4A>1=>A>\frac{1}{4}\)

24 tháng 3 2018

Bn trừ 2 PS kiểu gì hay zậy? 

Giúp mình nhá

24 tháng 10 2017

CTV đâu vào trả lời đi

Cơ hội trả lời đó

Dành riêng luôn

24 tháng 10 2017

\(-\frac{1123}{123}+123-\frac{1234}{3456}\)

\(=\frac{14006}{123}-\frac{1234}{3456}\)

\(=113,5128585\)

17 tháng 2 2019

Đk: $x\geq \frac{1}{2}$

Pt $\Leftrightarrow 4x^2+3x-7=4(\sqrt{x^3+3x^2}-2)+2(\sqrt{2x-1}-1)$

$\Leftrightarrow +4\frac{(x-1)(x+2)^2}{\sqrt{x^3+3x^2}+2}+4\frac{x-1}{\sqrt{2x-1}+1}-(x-1)(4x+7)=0$

$\Leftrightarrow (x-1)[\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-(4x+7)]=0$

$\Leftrightarrow x=1\vee \frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7=0$ $(*)$

Xét hàm số $f(x)=\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7,x\in [\frac{1}{2};+\infty )$ thì $f(x)>0,\forall x\in [\frac{1}{2};+\infty )$

$\Rightarrow $ Pt $(*)$ vô nghiệm

15 tháng 5 2017

\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)

\(A>\frac{1}{2.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)

\(=\frac{1}{2.2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+\frac{1}{5}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{2.2}+\frac{1}{3}-\frac{1}{11}\)

\(=\frac{65}{132}\)

\(\Rightarrow A>\frac{65}{132}\left(ĐPCM\right)\)

tất

nhiên

là lm

đc 

nhìn đã biết đc quy ;uật r ko cần phải đọc lâu lm j

23 tháng 2 2017

Tách tổng A thành 4 nhóm

A = ( 1 + \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\)) + ( \(\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}+\frac{1}{100}\right)+\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{149}+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{199}+\frac{1}{200}\right)\)

A > \(\frac{1}{50}.50+\frac{1}{100}.50+\frac{1}{150}.50+\frac{1}{200}.50\)\(\left(\frac{1}{50}+\frac{1}{100}+\frac{1}{150}+\frac{1}{200}\right).50=\frac{1}{24}.50=\frac{25}{12}\)

\(\Rightarrow\) A > \(\frac{25}{12}\)