Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{\left(-1\right).\left(-1\right)}{1.2}.\frac{\left(-2\right).\left(-2\right)}{2.3}...\frac{\left(-101\right).\left(-101\right)}{101.102}\)
\(=\frac{\left(-1\right)\left(-1\right)\left(-2\right)\left(-2\right)...\left(-101\right)\left(-101\right)}{1.2.2.3...101.102}\)
\(=\frac{\left[\left(-1\right)\left(-2\right)...\left(-101\right)\right].\left[\left(-1\right).\left(-2\right)...\left(-101\right)\right]}{\left(1.2...101\right).\left(2.3...102\right)}\)
\(=\left(-1\right).\frac{-1}{102}\)
\(=\frac{1}{102}\)
Vì \(\frac{1}{102}>\frac{-1}{100}\)
Vậy\(D>\frac{-1}{100}\)
A có tổng cộng 49 số hạng, nhóm 2 số hạng liên tiếp với nhau được:
\(A=\left(\frac{1}{1.3}-\frac{2}{3.5}\right)+\left(\frac{3}{5.7}-\frac{4}{7.9}\right)+...+\left(\frac{47}{93.95}-\frac{48}{95.97}\right)+\frac{49}{97.99}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{93.97}+\frac{49}{97.99}\)=> \(4A=\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{93.97}+\frac{196}{97.99}=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{93}-\frac{1}{97}+\frac{196}{97.99}\)
=> \(4A=1-\frac{1}{97}+\frac{196}{97.99}=\frac{96}{97}+\frac{196}{97.99}=\frac{9700}{97.99}=\frac{100}{99}>1\)
\(4A>1=>A>\frac{1}{4}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(B=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)
\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(B=1-\frac{1}{101}=\frac{100}{101}\)
\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)
\(C=3\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)
\(C=3\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{20-17}{17.20}\right)\)
\(C=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(C=3\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{27}{20}\)
\(D=\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)
\(D=\frac{7}{2}B=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{9^2}{9.10}\)
\(A=\frac{1.1.2.2.3.3...9.9}{1.2.2.3.3.4...9.10}\)
\(A=\frac{1}{10}\)
\(B=\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(B=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(B=\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)
\(B=\frac{1}{99}-\left(\frac{1}{99}-1\right)\)
\(B=\frac{1}{99}-\frac{1}{99}+1\)
\(B=1\)
a)=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(=1-\frac{1}{2009}\)
\(=\frac{2008}{2009}\)
b) =\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{94}-\frac{1}{97}\)
\(=1-\frac{1}{97}\)
=\(\frac{96}{97}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2008.2009}\) \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2008}-\frac{1}{2009}\)
= 1 - 1/2009
= 2008/2009
b) 3/1.4 + 3/4.7 + 3/7.10 + .... + 3/94.97
= 1- 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/94 - 1/97
= 1 - 1/97
= 96/97
Ta có : \(\frac{x-1}{2}=\frac{x+1}{3}\)
<=> \(3\left(x-1\right)=2\left(x+1\right)\)
<=> \(3x-3=2x+2\)
<=> \(3x-2x=2+3\)
<=> x = 5
a, \(\frac{x-1}{2}=\frac{x+1}{3}\)
=> (x-1)3 = 2(x+1)
=> 3x - 3 = 2x + 2
=> 3x - 2x = 2 + 3
=> x = 5
b, \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}< 1\) (ĐPCM)
a) \(=\frac{9}{1.4}+\frac{9}{4.7}+\frac{9}{7.10}+...+\frac{9}{61.64}\)
\(=3\left(\frac{1}{1}-\frac{1}{64}\right)\)
\(=\frac{189}{64}\)
b) \(=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{21}-\frac{1}{25}\)
\(=\frac{1}{1}-\frac{1}{25}\)
\(=\frac{24}{25}\)
c) Chưa học tới
b)1/1.5+1/5.9+1/9.13+...+1/21.25
=1/4.(4/1.5+4/5.9+4/9.13+4/21.25)
=1/4.(4-4/5+4/5-4/9+4/9-4/13+...+4/21-4/25)
=1/4.(4-4/25)
=1/4.(100/25-4/25)
=1/4.96/25
=24/25
Sao k có ai giúp mk hết vậy >:((, thôi để mk tự giúp mk vậy :>. E mới nghĩ ra cách này có gì sai anh giúp đỡ.
Cách 1 - Ta có :
\(A=\frac{1}{1.2}+\frac{1}{1.3}+\frac{1}{1.4}+...+\frac{1}{3.2}+\frac{1}{3.3}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)
\(\Rightarrow A=\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)
Mà \(\frac{5}{6}>\frac{2}{3}\Rightarrow\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}>\frac{2}{3}\)
\(\Leftrightarrowđpcm\)
~ Nguyệt ~:Đúng rồi nha em.
Anh nghĩ em nên trích ra các số quy luật, sau đó tính tổng rồi so sánh.
Như thế bài làm của em sẽ hay hơn.