K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2015

ta  tính \(y'=6x^2+a-12\)

để hàm số vừa có cực đại và cực tiểu thì \(y'=0\) hai nghiệm phân biệt suy ra \(6x^2+a-12=0\Leftrightarrow6x^2=12-a\) (*)

để (*) có 2 nghiệm phân biệt thì \(12-a>0\Leftrightarrow a<12\)

vậy với a<12 thì hàm số có cực đại và cực tiểu

gọi \(x_1;x_2\) là cực đại và cực tiểu của hàm số

suy ra \(x_{1,2}=\pm\sqrt{\frac{12-a}{6}}\) ta thay vào hàm số suy ra đc \(y_{1,2}\) suy ra \(I\left(x_1;y_1\right);A\left(x_2;y_2\right)\)

sử dụng công thức tính khoảng cách

pt đường thẳng y có dạng x=0

ta có \(d\left(I;y\right)=\frac{\left|x_1\right|}{\sqrt{1}}\)\(d\left(A;y\right)=\frac{\left|x_2\right|}{\sqrt{1}}\)

\(d\left(I,y\right)=d\left(A,y\right)\) giải pt ta tìm ra đc a

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

28 tháng 12 2019

Ta có

 

Để hàm số có hai cực trị kh y’=0  có hai nghiệm phân biệt

  ⇔ 2 - m ≠ - 1 ⇔ m ≠ 3

Nếu  -1<2-m hay m<3,

ycbt 

Nếu 2-m<-1 hay m>3, ycbt 

Vậy  m ∈ - 1 ; 3 ∪ 3 ; 4

Chọn A.

6 tháng 2 2017

Chọn A

[Phương pháp trắc nghiệm]

y ' = 3 x 2 - 6 x - m

Hàm số có 2 cực trị m > -3 , gọi x 1 , x 2 là hai nghiệm của phương trình y ' = 0 ,

ta có:  x 1 + x 2 = 2

Bấm máy tính

Hai điểm cực trị của đồ thị hàm số là

Gọi I là trung điểm của AB

⇒ I ( 1 ; - m )

Đường thẳng đi qua hai điểm cực trị là

Yêu cầu bài toán

Kết hợp với điều kiện thì m = 0

13 tháng 7 2018

Chọn A

 là tam thức bậc hai có ∆' = m2.

Do đó: y có cực đại cực tiểu ⇔ y’ có hai nghiệm phân biệt

 

⇔ g(x) có hai nghiệm phân biệt ⇔ ∆' > 0 ⇔ m ≠ 0. (1)

Khi đó, y’ có các nghiệm là: 1 ± m

→ tọa độ các điểm cực trị của đồ thị hàm số là

Để A và B cách đều gốc tọa độ khi và chỉ khi :

Đối chiếu với điều kiện (1), ta thấy chỉ  m = ± 1 2  thỏa mãn yêu cầu bài toán.

 

15 tháng 3 2018

Ta có 

Suy ra đồ thị có hai điểm cực tiểu là  A - m 2 - m + 1 ; y C T và  B m 2 - m + 1 ; y C T

Khi đó 

Dấu  xảy ra khi m=1/2.

Chọn B.

13 tháng 5 2019

+ Đạo hàm y’ =  -3x2+ 6x+ 3( m2-1) = -3( x2- 2x-m2+1).

Đặt g( x) = x2- 2x-m2+1 là tam thức bậc hai có ∆ ' = m 2 .

+ Do đó hàm số đã cho có cực đại cực tiểu khi và chỉ khi y’ =0 có hai nghiệm phân biệt hay g(x)  =0  có hai nghiệm phân biệt

  ⇔ ∆ ' > 0 ⇔ m ≠ 0 .                   (1)

+ Khi đó y’ có các nghiệm là: 1±m .

 Tọa độ các điểm cực trị của đồ thị hàm số là A( 1-m ; -2-2m3) và B( 1+m ; -2+ 2m3).

Ta có: 

O A → ( 1 - m ; - 2 - 2 m 3 ) ⇒ O A 2 = ( 1 - m ) 2 + 4 ( 1 + m 3 ) 2 . O B → ( 1 + m ; - 2 + 2 m 3 ) ⇒ O B 2 = ( 1 + m ) 2 + 4 ( 1 - m 3 ) 2 .

Để A và B cách đều gốc tọa độ khi và chỉ khi OA= O B  hay  OA2= OB2

( 1 - m ) 2 + 4 ( 1 + m 3 ) 2 = ( 1 + m ) 2 + 4 ( 1 - m 3 ) 2 ⇔ - 4 m + 16 m 3 = 0

Đối chiếu với điều kiện (1), ta thấy chỉ m = ± 1 2   thỏa mãn yêu cầu bài toán.

Vậy không có giá trị nguyên nào của m thỏa mãn yêu cầu  bài toán.

Chọn  A.

NV
6 tháng 10 2021

\(y'=4x^3-4mx=4x\left(x^2-m\right)\)

Hàm có cực đại, cực tiểu khi \(m>0\), khi đó ta có tọa độ các cực trị:

\(A\left(0;m^4+2m\right)\) ; \(B\left(-\sqrt{m};m^4-m^2+2m\right)\) ; \(C\left(\sqrt{m};m^4-m^2+2m\right)\)

3 cực trị luôn tạo thành 1 tam giác cân tại A

Gọi H là trung điểm BC \(\Rightarrow H\left(0;m^4-m^2+2m\right)\)

\(\Rightarrow AH=m^2\) ; \(BC=2\sqrt{m}\)

Tam giác ABC đều khi:

\(AH=\dfrac{BC\sqrt{3}}{2}\) \(\Rightarrow m^2=\sqrt{3m}\)

\(\Rightarrow m^4=3m\Rightarrow m=\sqrt[3]{3}\)

13 tháng 9 2017

Ta có  y’= 6x2+2mx-12

Do ∆ ' = m 2 + 72 > 0 ,   ∀ m ∈ ℝ   nên hàm số luôn có hai điểm cực trị x1; x2 với x1; x2 là hai nghiệm của phương trình y’=0 .

 Theo định lí Viet, ta có  x 1 + x 2 = - m 3

Gọi A( x1; y1) và B( x2; y2) là hai điểm cực trị của đồ thị hàm số.

Yêu cầu bài toán

⇔ x 1 = x 2 ⇔ x 1 = - x 2 (do x1 khác x2 )

⇔ x 1 + x 2 = 0 ⇔ - m 3 = 0 ⇔ m = 0

Chọn D.