cho \(log_2^3=a;log_2^5=b\) tính \(log^{600}_2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
ĐKXĐ: x+1>0 và x>0
=>x>0
=>\(log_2\left(x^2+x\right)=1\)
=>x^2+x=2
=>x^2+x-2=0
=>(x+2)(x-1)=0
=>x=1(nhận) hoặc x=-2(loại)
c: ĐKXĐ: x-1>0 và x-2>0
=>x>2
\(PT\Leftrightarrow log_2\left(x^2-3x+2\right)=3\)
=>\(\Leftrightarrow x^2-3x+2=8\)
=>x^2-3x-6=0
=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{2}\left(nhận\right)\\x=\dfrac{3-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)
\(a,\left(\dfrac{1}{9}\right)^{x+1}>\dfrac{1}{81}\\ \Leftrightarrow\left(\dfrac{1}{9}\right)^{x+1}>\left(\dfrac{1}{9}\right)^2\\ \Leftrightarrow x+1< 2\\ \Leftrightarrow x< 1\)
\(b,\left(\sqrt[4]{3}\right)^x\le27\cdot3^x\\ \Leftrightarrow3^{\dfrac{x}{4}}\le3^{x+3}\\ \Leftrightarrow\dfrac{x}{4}\le3=x\\ \Leftrightarrow-\dfrac{3}{4}x\le3\\ \Leftrightarrow x\ge-4\)
c, ĐK: \(\left\{{}\begin{matrix}x+1>0\\2-4x>0\end{matrix}\right.\Leftrightarrow-1< x< \dfrac{1}{2}\)
\(log_2\left(x+1\right)\le log_2\left(2-4x\right)\\ \Leftrightarrow x+1\le2-4x\\ \Leftrightarrow5x\le1\\ \Leftrightarrow x\le\dfrac{1}{5}\)
Kết hợp với ĐKXĐ, ta được: \(-1< x\le\dfrac{1}{5}\)
ta có:
\(log^{\left(2a^2\right)}_2+\left(log_2^a\right)a^{log_a^{\left(log^a_1+1\right)}}+\frac{1}{2}log^2_2a^4=log_2^2+log_2^{a^2}+log_2^a\left(log^a_2+1\right)+\frac{1}{2}log^2_2a^4\)
\(=1+2log^a_2+log^a_2\left(1+log^a_2\right)+2log^2a_2\)
\(=3log^2_2a+3log^a_2+1\)
\(D=\frac{\log_2\left(2a^2\right)+\left(\log_2a\right)a^{\log_2\left(\log_2a+1\right)}+\frac{1}{2}\log^2_2a^4}{\log_2a^3\left(3\log_2a+1\right)+1}=\frac{1+2\log_2a+\log_2a\left(\log_2a+1\right)+8\log^2_2a}{3\log_2a.\left(3\log_2a+1\right)+1}\)
\(=\frac{9\log^2_2a+3\log_2a+1}{9\log^2_2a+3\log_2a+1}=1\)
ta có \(log^{27}_2=log^{3^3}_2=3log^3_2=a\Rightarrow log^3_2=\frac{a}{3}\)
mặt khác
\(log^{\sqrt[6]{2}}_{\sqrt{3}}=\frac{1}{log^{\sqrt{3}}_{\sqrt[6]{2}}}=\frac{1}{log^{3^{\frac{1}{2}}}_{2^{\frac{1}{6}}}}=\frac{1}{\frac{1}{2}log^3_{2^{\frac{1}{6}}}}=\frac{1}{\frac{1}{2}\frac{1}{\frac{1}{6}}log_2^3}=\frac{1}{3.log_2^3}=\frac{1}{3}.\frac{a}{3}=\frac{a}{9}\)
Điều kiện x, y dương. Hệ phương trình tương đương với hệ :
\(\begin{cases}\log_2\left(x+3\right)=2\left(1+\log_3y\right)\\2\left(1+\log_3x\right)=\log_2\left(y+3\right)\end{cases}\) (*)
Cộng vế với vế 2 phương trình của hệ (*) ta có :
\(\log_2\left(x+3\right)+2\log_3x=\log_2\left(y+3\right)+2\log_3y\)
Xét hàm số :
\(f\left(t\right)=\log_2\left(t+3\right)+2\log_3t\) trên miền \(\left(0;+\infty\right)\).
Dễ thấy hàm số luôn đồng biến trên \(\left(0;+\infty\right)\)., mà \(f\left(x\right)=f\left(y\right)\) nên \(x=y\).
Thay vào một trong hai phương trình của hệ (*), ta được
\(\log_2\left(x+3\right)=2\left(1+\log_3x\right)\)
hay
\(x+3=2^{2\left(1+\log_3x\right)}=4.2^{\log_3x^2}=4.2^{\log_32.\log_2x^2}=4\left(2^{\log_2x^2}\right)^{\log_32}\)
\(\Leftrightarrow x+3=4.x\log^{\log_34}\)
\(\Leftrightarrow x^{1-\log_34}+3.x^{-\log_34}=4\) (**)
Xét
\(g\left(x\right)=x^{1-\log_34}+3.x^{-\log_34}\) trên khoảng( \(0:+\infty\)), ta có :
\(g'\left(x\right)=\left(1-\log_34\right)x^{-\log_34}-3.\log_34x^{-1-\log_34}\)
Thấy ngay \(g'\left(x\right)<0\) với mọi \(x\in\left(0;+\infty\right)\), do đó \(g\left(x\right)\)nghịch biến trên \(\left(0;+\infty\right)\)
Mặt khác \(g\left(1\right)=4\) vậy x=1 là nghiệm duy nhất của phương trình (**)
Hệ phương trình đã cho có nghiệm duy nhất là (1;1)
ĐKXĐ: \(x>0;x\ne\left\{\dfrac{1}{2};2\right\}\)
\(\Leftrightarrow\dfrac{2}{1-log_2x}+\dfrac{\dfrac{1}{2}log_2x}{1+log_2x}>\dfrac{log_2x}{1-log_2^2x}\)
Đặt \(log_2x=t\ne\pm1\)
\(\Rightarrow\dfrac{2}{1-t}+\dfrac{t}{2\left(1+t\right)}>\dfrac{t}{1-t^2}\)
\(\Leftrightarrow\dfrac{4\left(1+t\right)+t\left(1-t\right)-2t}{2\left(1-t\right)\left(1+t\right)}>0\)
\(\Leftrightarrow\dfrac{-t^2+3t+4}{2\left(1-t\right)\left(1+t\right)}>0\Leftrightarrow\dfrac{\left(t+1\right)\left(4-t\right)}{2\left(1-t\right)\left(1+t\right)}>0\)
\(\Leftrightarrow\dfrac{4-t}{1-t}>0\Rightarrow\left[{}\begin{matrix}t>4\\t< 1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}log_2x>4\\log_2x< 1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>16\\0< x< \dfrac{1}{2}\\\dfrac{1}{2}< x< 2\end{matrix}\right.\)
Đề bài là:
\(\dfrac{2}{1-log_2x}+\dfrac{log_4x}{1+log_2x}>\dfrac{log_2x}{1-log_2^2x}\) đúng ko bạn?
ĐKXĐ:
a.
\(2x-4>0\Rightarrow x>2\Rightarrow D=\left(2;+\infty\right)\)
b.
\(2x+8>0\Rightarrow x>-4\Rightarrow D=\left(-4;+\infty\right)\)
c.
\(4-x>0\Rightarrow x< 4\Rightarrow D=\left(-\infty;4\right)\)
d.
\(\dfrac{1}{x+4}>0\Rightarrow x>-4\Rightarrow D=\left(-4;+\infty\right)\)
e.
\(\left(x-3\right)\left(x+9\right)>0\Rightarrow\left[{}\begin{matrix}x>3\\x< -9\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-9\right)\cup\left(3;+\infty\right)\)
a: ĐKXĐ: 2x-4>0
=>2x>4
=>x>2
b: ĐKXĐ: 2x+8>0
=>2x>-8
=>x>-4
c: ĐKXĐ: 4-x>0
=>-x>-4
=>x<4
d: ĐKXĐ: \(\dfrac{1}{x+4}>0\)
=>x+4>0
=>x>-4
e: ĐKXĐ: \(\left(x-3\right)\left(x+9\right)>0\)
=>\(\left[{}\begin{matrix}x-3>0\\x+9< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -9\end{matrix}\right.\)
\(log_2\dfrac{9}{10}+log_330=\) ? bạn chắc đề đúng chứ, 2 cơ số ko giống nhau, rút gọn cũng được nhưng nó sẽ không gọn trên thực tế.
\(log_3\dfrac{5}{9}-2log_3\sqrt{5}=log_3\dfrac{5}{9}-log_35=log_3\left(\dfrac{1}{9}\right)=log_33^{-2}=-2\)
\(log_2\dfrac{16}{3}+2log_2\sqrt{6}=log_2\dfrac{16}{3}+log_26=log_2\left(\dfrac{16}{3}.6\right)=log_232=log_22^5=5\)
ta áp dụng công thức \(log_a^{x_1x_2...x_n}=log_a^{x_1}+log_a^{x_2}+...+log_a^{x_n}\) ta có
\(log_2^{600}=log_2^{25.8.3}=log_2^{25}+log_2^8+log_2^3=2log_2^5+3+log_2^3=2b+3+a\)