K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2015

ta áp dụng công thức \(log_a^{x_1x_2...x_n}=log_a^{x_1}+log_a^{x_2}+...+log_a^{x_n}\)  ta có 

\(log_2^{600}=log_2^{25.8.3}=log_2^{25}+log_2^8+log_2^3=2log_2^5+3+log_2^3=2b+3+a\)

3 tháng 10 2015

 ta có:

\(log^{\left(2a^2\right)}_2+\left(log_2^a\right)a^{log_a^{\left(log^a_1+1\right)}}+\frac{1}{2}log^2_2a^4=log_2^2+log_2^{a^2}+log_2^a\left(log^a_2+1\right)+\frac{1}{2}log^2_2a^4\)

\(=1+2log^a_2+log^a_2\left(1+log^a_2\right)+2log^2a_2\)

\(=3log^2_2a+3log^a_2+1\)

2 tháng 10 2015

ta có \(log^{27}_2=log^{3^3}_2=3log^3_2=a\Rightarrow log^3_2=\frac{a}{3}\)

mặt khác

\(log^{\sqrt[6]{2}}_{\sqrt{3}}=\frac{1}{log^{\sqrt{3}}_{\sqrt[6]{2}}}=\frac{1}{log^{3^{\frac{1}{2}}}_{2^{\frac{1}{6}}}}=\frac{1}{\frac{1}{2}log^3_{2^{\frac{1}{6}}}}=\frac{1}{\frac{1}{2}\frac{1}{\frac{1}{6}}log_2^3}=\frac{1}{3.log_2^3}=\frac{1}{3}.\frac{a}{3}=\frac{a}{9}\)

4 tháng 10 2015

đk: \(\begin{cases}3x-1\ge0\\x+3\ge0\\x+1\ge0\end{cases}\)

ta có

\(\log_2\left(3x-1\right)+\log_2\left(x+3\right)=\log_22^2+\log_2\left(x+1\right)\Rightarrow\log_2\left(3x-1\right)\left(x+3\right)=\log_2\left(2^2\left(x+1\right)\right)\)

suy ra \(\left(3x-1\right)\left(x+3\right)=4\left(x+1\right)\)

giải pt ta tìm đc x đối chiếu với đk của bài ta đc nghiệm của pt
9 tháng 11 2018

Đáp án A.

9 tháng 10 2018

9 tháng 9 2019

Đáp án D

Ta có log25000 = log25 + log1002log5 + 3 = 2a + 3

18 tháng 1 2018

6 tháng 3 2018