K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2021

a) Vì AH là đường kính \(\Rightarrow\angle AEH=\angle AFH=90\)

Vì BC là đường kính \(\Rightarrow\angle BAC=90\Rightarrow\angle AEH=\angle AFH=\angle EAF=90\)

\(\Rightarrow AEHF\) là hình chữ nhật

\(\Rightarrow\angle AEF=\angle AHF=\angle ACH\left(=90-\angle HAC\right)\)

\(\Rightarrow\angle AEF+\angle ABC=\angle ACH+\angle ABC=90\)

mà \(\angle ABC=\angle BAO\) (\(\Delta ABO\) cân tại O)

\(\Rightarrow\angle AEF+\angle BAO=90\Rightarrow EF\bot AO\)

c) EF cắt BC tại T'.T'A cắt (O) tại K'

Vì \(\angle AEF=\angle ACH\Rightarrow EFCB\) nội tiếp

Xét \(\Delta T'EB\) và \(\Delta T'CF:\) Ta có: \(\left\{{}\begin{matrix}\angle T'EB=\angle T'CF\\\angle FT'Cchung\end{matrix}\right.\)

\(\Rightarrow\Delta T'EB\sim\Delta T'CF\left(g-g\right)\Rightarrow\dfrac{T'E}{T'C}=\dfrac{T'B}{T'F}\Rightarrow T'E.T'F=T'B.T'C\)

Vì AK'BC nội tiếp \(\Rightarrow\angle T'K'B=\angle T'CA\)

Xét \(\Delta T'K'B\) và \(\Delta T'CA:\) Ta có: \(\left\{{}\begin{matrix}\angle T'K'B=\angle T'CA\\\angle AT'Cchung\end{matrix}\right.\)

\(\Rightarrow\Delta T'K'B\sim\Delta T'CA\left(g-g\right)\Rightarrow\dfrac{T'K'}{T'C}=\dfrac{T'B}{T'A}\Rightarrow T'K'.T'A=T'B.T'C\)

\(\Rightarrow T'K'.T'A=T'E.T'F\Rightarrow\dfrac{T'K'}{T'F}=\dfrac{T'E}{T'A}\)

Xét \(\Delta T'EK'\) và \(\Delta T'AF:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{T'K'}{T'F}=\dfrac{T'E}{T'A}\\\angle FT'Achung\end{matrix}\right.\)

\(\Rightarrow\Delta T'EK'\sim\Delta T'AF\left(c-g-c\right)\Rightarrow\angle T'K'E=\angle T'FA\)

\(\Rightarrow AK'EF\) nội tiếp \(\Rightarrow K'\in\) đường tròn đường kính AH

\(\Rightarrow K'\equiv K\Rightarrow T'\equiv T\Rightarrow T,E,F\) thẳng hàng

undefined

 

25 tháng 7 2021

undefined

19 tháng 4 2023

a) Ta có : \(\hat{A}=90^o\) (góc nội tiếp chắn nửa đường tròn (O), đường kính BC).

\(\hat{E}=90^o\) (góc nội tiếp chắn nửa đường tròn (I), đường kính AH).

\(\hat{F}=90^o\) (góc nội tiếp chắn nửa đường tròn (I), đường kính AH).

Suy ra, AHEF là hình chữ nhật (dấu hiệu nhận biết) (điều phải chứng minh).

b) Ta có : \(\hat{HAC}+\hat{C}=90^o\) (hai góc phụ nhau) và \(\hat{ABC}+\hat{C}=90^o\) (hai góc phụ nhau)

\(\Rightarrow\hat{HAC}=\hat{ABC}\) (điều phải chứng minh).

Mặt khác : \(\hat{AEF}=\hat{AHF}\) (hai góc nội tiếp đường tròn (I) cùng chắn cung AF).

Và : \(\left\{{}\begin{matrix}\hat{AHF}+\hat{HAC}=90^o\\\hat{C}+\hat{HAC}=90^o\end{matrix}\right.\Rightarrow\hat{AHF}=\hat{C}\). Suy ra : \(\hat{AEF}=\hat{C}\).

Lại có : \(\hat{AEF}+\hat{BEF}=180^o\) (hai góc kề bù) \(\Rightarrow\hat{C}+\hat{BEF}=180^o\).

Mà trong tứ giác BEFC, hai góc trên lại đối nhau. Do đó, tứ giác BEFC nội tiếp được một đường tròn (điều phải chứng minh).

5 tháng 9 2023

giúp mik với các bạn

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

=>CF vuông góc AB

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE vuông góc AC

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm

=>AH vuông góc BC tại D

b: Xét tứ giác AFHE có

góc AFH+góc AEH=90+90=180 độ

=>AFHE nội tiếp đường tròn đường kính AH

I là trung điẻm của AH

c:

Xét tứ giác BFHD có

góc BFH+góc BDH=180 độ

=>BFHD nội tiếp

=>góc DFH=góc DBH=góc EBC

góc IFD=góc IFH+góc DFH

=góc IHF+góc EBC

=góc DHC+góc EBC

=90 độ-góc FCB+góc EBC

=90 độ

=>IF là tiếp tuyến của (O)

Xét ΔIFD và ΔIED có

IF=IE

FD=ED

ID chung

=>ΔIFD=ΔIED

=>góc IED=góc IFD=90 độ

=>IE là tiếp tuyến của (O)

a:

góc BDC=góc BEC=1/2*sđ cung BC=90 độ

=>CD vuông góc AB và BE vuông góc AC

Xét ΔABC có

CD,BE là đường cao

CD cắt BE tại H

=>H là trực tâm

=>AH vuông góc BC

b: góc AEH+góc ADH=180 độ

=>AEHD nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

c: góc BDC=góc BEC=90 độ

=>BDEC nội tiếp đường tròn đường kính BC

=>O là trung điểm của BC

d: ID=IE

OD=OE

=>OI là trung trực của DE

=>OI vuông góc DE

a) Xét (O) có 

ΔDBC nội tiếp đường tròn(D,B,C∈(O))

BC là đường kính(gt)

Do đó: ΔDBC vuông tại D(Định lí)

⇒CD⊥BD tại D

⇒CD⊥AB tại D

⇒HD⊥AD tại D

Xét ΔADH có HD⊥AD tại D(cmt)

nên ΔADH vuông tại D(Định nghĩa tam giác vuông)

Ta có: ΔADH vuông tại D(cmt)

mà DI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)

nên \(DI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Xét (O) có

ΔBEC nội tiếp đường tròn(B,E,C∈(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

⇒BE⊥CE tại E

⇒BE⊥AC tại E

⇒HE⊥AE tại E

Xét ΔAEH có AE⊥EH tại E(cmt)

nên ΔAEH vuông tại E(Định nghĩa tam giác vuông)

Ta có: ΔAEH vuông tại E(cmt)

mà EI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)

nên \(EI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Từ (1) và (2) suy ra ID=IE

hay I nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OD=OE(=R)

nên O nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra OI là đường trung trực của DE

hay OI⊥DE(đpcm)

I là điểm nào ạ?

3 tháng 1

a) Chứng minh tam giác ABH vuông tại H và \(DH\perp AB\) rồi dùng hệ thức lượng \(\Rightarrow AD.AB=AH^2\). Tương tự, ta có \(AM.AC=AH^2\). Do đó \(AD.AB=AM.AC\) và theo bổ đề quen thuộc thì tứ giác BCMD nội tiếp. (đpcm)

b) Gọi Q là giao điểm của DM và AI. Khi đó tam giác ABC vuông tại A có trung tuyến AI nên \(IA=IB=IC=\dfrac{BC}{2}\) hay tam giác IBA cân tại I, suy ra \(\widehat{B}=\widehat{DAQ}\).

 Lại có \(\widehat{B}+\widehat{ACB}=90^o\) suy ra \(\widehat{DAQ}+\widehat{ADQ}=90^o\) (do \(\widehat{ADQ}=\widehat{ACB}\) (cmt)). Do đó \(PQ\perp AI\) tại Q. Từ đó dễ dàng chứng minh O là trực tâm tam giác AIP.

 c) Do tứ giác BCMD nội tiếp nên \(PM.PD=PC.PB\) \(\Rightarrow P_{P/\left(O\right)}=P_{P/\left(I\right)}\) \(\Rightarrow\) P nằm trên trục đẳng phương của (O) và (I). Lại có AE chính là trục đẳng phương của (O) và (I) nên A, E, P thẳng hàng. (đpcm)

 d) Ta thấy SO//AB \(\perp AC\) và \(AH\perp BC\) nên O là trực tâm tam giác ASC \(\Rightarrow OC\perp AS\)

 Lại có OC//KR nên \(RK\perp SA\) (đpcm)

3 tháng 1

 Ở bài này chứng minh được \(A\in\left(I\right)\) vì BC là đường kính của (I) và \(\widehat{BAC}=90^o\)

a: Xét (O) có

ΔAHM nội tiếp

AH là đường kính

Do đó: ΔAHM vuông tại M

=>HM\(\perp\)AC tại M

Xét (O) có

ΔADH nội tiếp

AH là đường kính

Do đó:ΔADH vuông tại D

=>HD\(\perp\)AB tại D

Xét ΔHAB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HM là đường cao

nên \(AM\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AM\cdot AC\)

=>AD/AC=AM/AB

Xét ΔAMD và ΔABC có

AM/AB=AD/AC
góc MAD chung

Do đó: ΔAMD đồng dạng với ΔABC

=>\(\widehat{AMD}=\widehat{ABC}\)

mà \(\widehat{AMD}+\widehat{DMC}=180^0\)(hai góc kề bù)

nên \(\widehat{DMC}+\widehat{DBC}=180^0\)

=>DMCB là tứ giác nội tiếp