Cho tam giác MNK vuông tại M có đcao MI. Bik MI=8cm,MK=15cm. Tính NK,MN,NI,IK
Giups mik vs ạ!!!!!! mik gấp lawmsmmmmm!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py Ta Go vào tam giác MNK ta được:
NK^2=NM^2+MK^2
NK^2=9^2+12^2
NK^2=81+144
NK^2=225
=>NK=15
a: NK=15cm
b: Xét ΔKNI cso
KM là đường cao
KM là đường trung tuyến
DO đó: ΔKNI cân tại K
c: Xét ΔMAK vuông tại A và ΔMBK vuông tại B có
MK chung
\(\widehat{AKM}=\widehat{BKM}\)
Do đó: ΔMAK=ΔMBK
d: Xét ΔKIN có KB/KI=KA/KN
nên AB//IN
a: NK=căn 9^2+12^2=15cm
b: Xét ΔKIN có
KM vừalà đườg cao, vừa là trung tuyến
=>ΔKIN cân tại K
c: Xét ΔKBM vuông tại B và ΔKAM vuông tại A có
KM chung
góc BKM=góc AKM
=>ΔKBM=ΔKAM
=>KB=KA
d: Xét ΔKIN có KB/KI=KA/KN
=>BA//IN
câu a) áp dụng định lý Pytago mà làm
b) ta có: \(MN=MI\)và \(MK\perp NI\)
\(\Rightarrow MK\) là đường trung trực \(\Delta KNI\)
xét \(\Delta KNM\)và \(\Delta KIM\) có:
\(KM\)chung
\(\widehat{KMN}=\widehat{KMI}\) \(=90^0\)
\(MN=MI\)
\(\Rightarrow\Delta KNM=\Delta KIM\) ( C.G.C)
\(\Rightarrow KN=KI\)
\(\Rightarrow\Delta KNI\)cân
câu a) áp dụng định lý Pytago mà làm b) ta có: MN = MI và MK⊥NI
⇒MK là đường trung trực ΔKNI xét ΔKNMvà ΔKIM có:
KMchung = = 90 0
MN = MI
⇒ΔKNM = ΔKIM ( C.G.C)
⇒KN = KI ⇒ΔKNI cân
mk nghĩ vậy
:3
a) Áp dụng định lí pi-ta-go vào \(\Delta MNK\)vuông tại M có:
\(NK^2=NM^2+MK^2\Rightarrow NK^2=9^2+12^2\Rightarrow NK=15\)
b) Xét \(\Delta NMK\)vuông tại M và \(\Delta IMK\)vuông tại M có:
MK chung
NM=IM (gt)
\(\Rightarrow\Delta MNK=\Delta IMK\left(cgv-cgv\right)\)
\(\Rightarrow\widehat{NKM}=\widehat{IKM}\)hay \(\widehat{AKM}=\widehat{BKM}\)
Xét \(\Delta MAK\)vuông tại A và \(\Delta MBK\)vuông tại B có:
\(\widehat{AKM}=\widehat{BKM}\)(c/m trên)
MK chung
\(\Rightarrow\Delta MAK=\Delta MBK\left(ch-gn\right)\)
c) Vì \(\Delta MAK=\Delta MBK\)
\(\Rightarrow AK=BK\Rightarrow\Delta ABK\)cân tại K
\(\Rightarrow\widehat{KAB}=\widehat{KBA}\)
Áp dụng tính chất tổng 3 góc trong 1 tam giác có:
\(\widehat{KAB}+\widehat{KBA}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KAB}=\frac{180^o-\widehat{NKI}}{2}\left(1\right)\)
tới đây bn tự làm tiếp
a) Xét tam giác PNK vuông tại P và tam giác INK vuông tại I có:
\(\widehat{N}=\widehat{K}\)(tam giác MNK là tam giác cân)
NK:chung
Suy ra \(\Delta PNK=\Delta INK\)(cạnh huyền-góc nhọn)
=>PN=IK(1)
Mà do MNK cân tại M nên MN=MK(2)
Từ (1) và (2), suy ra MI=MP
b)Từ a) ta suy ra: \(\widehat{HNK}=\widehat{HKN}\)(hai góc tương ứng)<=> \(\widehat{IKH}=\widehat{PNH}\)
Xét tam giác PHN vuông tại P và tam giác IHK vuông tại I có:
\(NP=IK\left(cmt\right)\)
\(\widehat{IKH}=\widehat{PNH}\)(cmt)
Suy ra:....(cạnh góc vuông-góc nhọn kề)
=>HP=HI
Xét tam giác PMH và tam giác HMI có:
MH:chung
MP=MI(cmt)
HP=HI(cmt)
Suy ra:....(c-c-c)
=> \(\widehat{PMH}=\widehat{IMH}\)(hai góc tương ứng )
=>MH là tia phân giác của góc M
c) Từ b) suy ra MP=MI(2 cạnh tương ứng)
=>PMI là tam giác cân
Xét tam giác PMI có:
\(\widehat{P}=\widehat{I}=\frac{180^o-\widehat{M}}{2}\left(1\right)\)
Xét tam giác MNK có:
\(\widehat{K}=\widehat{N}=\frac{180^o-\widehat{M}}{2}\left(2\right)\)
=>\(\widehat{K}=\widehat{N}=\widehat{P}=\widehat{I}\)
Mà các cặp góc này ở vị trí đồng vị nên PI//NK
Bạn tự vẽ hình
Vì K là trung điểm của NI
=> IK = NK
Xét \(\Delta MNI\)ta có :
\(MN=MI\left(gt\right)\)
\(MK\)là cạnh chung
\(IK=NK\)
=> \(\Delta MNK=\Delta MIK\)
b, Vì \(\Delta MNK=\Delta MIK\) ta có :
\(\widehat{MKI}=\widehat{MKN}\)( 2 góc t/ư )
\(\Rightarrow\widehat{MKI}+\widehat{MKN}=180^0\)( t/c 2 góc kề bù )
\(\Rightarrow2\widehat{MKI}=2\widehat{MKN}=180^0\)
\(\Rightarrow\widehat{MKI}=\widehat{MKN}=90^0\)hay \(MK\perp NI\)