K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(4x^4+4x^2+1=\left(2x^2+1\right)^2\)

\(9x^4-6x^2+1=\left(3x^2-1\right)^2\)

\(\dfrac{x^2}{9}-\dfrac{2}{3}x+1=\left(\dfrac{x}{3}+1\right)^2\)

\(x^2-25=\left(x-5\right)\left(x+5\right)\)

a: \(x^2+2x+1+4x+4\)

\(=\left(x^2+2x+1\right)+\left(4x+4\right)\)

\(=\left(x+1\right)^2+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x+1+4\right)\)

\(=\left(x+1\right)\left(x+5\right)\)

b: Sửa đề: \(2x^3+6x^2+x^2+3x\)

\(=2x^2\left(x+3\right)+x\left(x+3\right)\)

\(=\left(x+3\right)\left(2x^2+x\right)\)

\(=x\left(x+3\right)\left(2x+1\right)\)

c: \(\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{4}x+1\)

\(=\dfrac{1}{4}x\left(\dfrac{1}{4}x+1\right)+\left(\dfrac{1}{4}x+1\right)\)

\(=\left(\dfrac{1}{4}x+1\right)\left(\dfrac{1}{4}x+1\right)=\left(\dfrac{1}{4}x+1\right)^2\)

30 tháng 9 2021

giup e với

 

28 tháng 8 2018

10 tháng 3 2021

k cho tui nha

26 tháng 12 2022

\(B1\\ a,2x+10y=2\left(x+5y\right)\\ b,x^2+4x+4=x^2+2.2x+2^2=\left(x+2\right)^2\\ c,x^2-y^2+10y-25\\ =\left(x^2-y^2\right)+5\left(2y-5\right)\\ =\left(x-y\right)\left(x+y\right)+5\left(2y-5\right)\\ B2\)

\(a,x^2-3x+x-3=0\\ =>x\left(x-3\right)+\left(x-3\right)=0\\ =>\left(x+1\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\ b,2x\left(x-3\right)-\dfrac{1}{2}\left(4x^2-3\right)=0\\ =>2x^2-6x-2x^2+\dfrac{3}{2}=0\\ =>-6x=-\dfrac{3}{2}\\ =>x=\left(-\dfrac{3}{2}\right):\left(-6\right)\\ =>x=\dfrac{1}{4}\\ c,x^2-\left(x-3\right)\left(2x-5\right)=9\\ =>x^2-2x^2+6x+5x-15=9\\ =>-x^2+11-15-9=0\\ =>-x^2+11x-24=0\\ =>-x^2+8x+3x-24=0\\ =>-x\left(x-8\right)+3\left(x-8\right)=0\\ =>\left(3-x\right)\left(x-8\right)=0\\ =>\left[{}\begin{matrix}3-x=0\\x-8=0\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\)

31 tháng 5 2016

a. \(-x^3-6x^2+6x+1=-x^3+x^2-7x^2+7x-x+1=\left(1-x\right)\left(x^2+7x+1\right)\)

b. \(x^4-4x^2+4x-1=x^4-1-4x\left(x-1\right)=\left(x-1\right)\left[\left(x+1\right)\left(x^2+1\right)-4x\right]\)

\(=\left(x-1\right)\left(x^3+x^2-3x+1\right)\)

c. \(6x^3-x^2-486x+81=6x^3-54x^2+53x^2-477x-9x+81=\left(x-9\right)\left(6x^2+53x-9\right)\)

\(=\left(x-9\right)\left(x+9\right)\left(6x-1\right)\)

d. \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)=x^2\left(x^2+8x+16\right)-x^2-8x-16-x^2+1\)

\(=x^4+8x^3+14x^2-8x-15=x^4+5x^3+3x^3+15x^2-x^2-5x-3x-15\)

\(=\left(x+5\right)\left(x^3+3x^3-x-3\right)=\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)\)

Để phân tích nhân tử các dạng này, em cần nhẩm được nghiệm để biết đc nhân tử chung là gì, sau đó tách để xuất hiện nhân tử chung đó. CHÚC EM HỌC TỐT :)) 

16 tháng 5 2019

9 tháng 8 2019

\(a,x^4+4x^2-5\)

\(=x^4+4x^2+4-9\)

\(=\left(x^2+2\right)^2-3^2\)

\(=\left(x^2+5\right)\left(x^2-1\right)\)

NV
1 tháng 1

Đa thức đã cho không phân tích thành nhân tử được

2 tháng 1

*Đoán nghiệm sử dụng tính chất của đa thức:

 Ta dễ dàng nhận thấy đa thức \(P\left(x\right)=x^3+4x^2-19x+24\) không có nghiệm là \(\pm1\).

 Giả sử \(P\left(x\right)\) có nghiệm hữu tỉ dạng \(\dfrac{p}{q}\left(p,q\inℤ\right)\), không mất tổng quát giả sử \(q>0\). Khi đó \(p|24\)\(q|1\) \(\Rightarrow q=1\).

 Khi đó do \(P\left(x\right)\) không có nghiệm là \(\pm1\) nên \(p\in\left\{\pm2,\pm3,\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)

 Thử lại, ta thấy không có số \(p\) nào thỏa mãn \(\dfrac{p}{q}\) là nghiệm của P(x). Vậy đa thức \(P\left(x\right)\) không có nghiệm hữu tỉ \(\Rightarrow\) \(P\left(x\right)\) không thể phân tích thành nhân tử.

 * Chú ý rằng chỉ khi \(degP\left(x\right)\le3\) hoặc \(degP\left(x\right)⋮̸2\) thì từ P(x) không có nghiệm hữu tỉ mới suy ra được P(x) không phân tích được thành nhân tử nhé. Nếu \(\left\{{}\begin{matrix}degP\left(x\right)\ge4\\degP\left(x\right)⋮2\end{matrix}\right.\) thì chưa chắc điều này đã đúng. VD: Đa thức \(Q\left(x\right)=x^4+4\) không có nghiệm hữu tỉ (nó thậm chí còn không có nghiệm thực) nhưng ta vẫn có thể phân tích thành nhân tử như sau:

 \(Q\left(x\right)=x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)