K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2021

a) Ta có: \(\angle AEH+\angle AFH=90+90=180\Rightarrow AEHF\) nội tiếp

b) AEHF nội tiếp \(\Rightarrow\angle EFA=\angle EHA=90-\angle BHE=\angle ABC\)

c) Ta có: \(\angle OAC=\dfrac{180-\angle AOC}{2}=90-\dfrac{1}{2}\angle AOC=90-\angle ABC\)

\(\Rightarrow\angle OAC+\angle ABC=90\Rightarrow\angle OAC+\angle AFE=90\Rightarrow OA\bot EF\)

undefined

16 tháng 7 2021

cảm ơn bạn 

 

a: góc AEB=góc AHB=90 độ

=>AEHB nội tiếp

Xét ΔAHB vuông tại H và ΔACD vuông tại C có

góc ABH=góc ADC

=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE

=góc ABE+90 độ-góc HAB

=90 độ

=>HE vuông góc AC

=>HE//CD

27 tháng 4 2018

A B C O H D E F

Ta có: Tứ giác ABDC nội tiếp đường tròn (O) => ^DBC=^CAD (1)

Đường tròn (O) có đường kính AD và điểm B thuộc (O) => ^ABD vuông tại B => AB \(\perp\)BD

=> HE // BD (Quan hệ song song vuông góc) => ^DBC=^BHE (So le trong)

^BHE=^BAH (Cùng phụ ^AHE) => ^DBC=^BAH=^EAH.

Dễ thấy tứ giác AEHF là tứ giác nội tiếp (Tâm là trung điểm của AH)

=> ^EAH=^EFH. Mà ^EAH=^DBC (cmt) => ^EFH=^DBC (2)

Từ (1) và (2) => ^CAD=^EFH 

Lại có: ^EFH+^AFE=900 ; ^CAD+^ADC=900 => ^AFE=^ADC

=> ^CAD+^AFE=900 => AD\(\perp\)EF (đpcm)

a: góc BEH+góc BFH=90 độ

=>BEHF nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

Xét ΔABK vuông tại B và ΔAFC vuông tại F có

góc AKB=góc ACF

=>ΔABK đồng dạng với ΔAFC