Cho ∆ABC có AB>AC. Từ trung điểm M của BC vẽ một đường vuông góc với tia phân giác của góc A, cắt tia phân giác tại H, cắt AB, AC lần lượt tại E và F. Chứng minh rằng: a) BE = CF b) AE=AB+AC/2 , BE=AB-AC c) góc BME= (góc ACB - góc B )/2 🙏 Giúp mình với 🙏
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một người vay 100 000 000 đồng (một trăm triệu đồng) với lãi suất 1,5% tháng. Hỏi sau 3 tháng người đó phải trả bao nhiêu tiền? (Biết lãi được nhập vốn để tính lãi tiếp tháng sau).giúp
câu a, làm ở câu hỏi kia rồi
câu b) ta có
\(AE=AF\Rightarrow2AE=AE+AF=AE+AC+CF=AE+AC+BE=AB+AC\Rightarrow AE=\frac{AB+AC}{2}\left(ĐPCM\right)\)
câu c)
cái này áp dụng góc ngoài = tổng các góc trong nhé !
ta có \(\widehat{ACB}=\widehat{CFM}+\widehat{CMF}=\widehat{AEF}+\widehat{EMB}=\widehat{ABC}+\widehat{EMB}+\widehat{EMB}\Rightarrow2\widehat{EMB}=\widehat{ACB}-\widehat{ABC}\Rightarrow\frac{\widehat{ACB}-\widehat{ABC}}{2}=\widehat{EMB}\left(ĐPCM\right)\)
Bạn tự vẽ hình nha
a)_ Từ C kẻ đường thẳng song song với AB, cắt FE tại N => ^NCM = ^EBM (so le trong)
_Xét tg NCM và tg EBM ta có:
^NCM =^EBM(cmt)
CM=BM(gt)
^NMC =^EMB(đối đỉnh)
=> tg NCM = tg EBM (g.c.g)
=> CN = BE (2 cạnh tương ứng)
_CN // AB(cách vẽ) => ^CNF = ^AEF(đồng vị)(1)
Bạn c/m tg AHF = tg AHE(g.c.g)
=> ^AFH = ^AEH hay ^CFN = ^AEF(2)
(1),(2) => ^CNF = ^CFN => tg CFN cân tại C
=> CF = CN. Mà CN = BE(cmt) => CF = BE
b) _Ta có: AB = AE + BE; AC = AF - CF
=> AB + AC = AE+BE+AF-CF(*)
Tg AHF = tg AHE(cmt) => AF = AE
Lại có BE=CF(câu a) thay vào(*) ta có:
AB+AC = AE+BE+AE-BE =2.AE
=> AE=(AB+AC)/2
*Để mk nghĩ câu c đã
Cảm ơn bạn 🙂