cho hinh thang ABCD và điểm chính giữa là M,N,P,Q .hãy so sánh SMNPQ với diện tích đất hình thang ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ hình
+ Tính tổng diện tích 4 tam giác ngoài tứ giác MNPQ
--> S MNPQ = \(S_{MNPQ}=\dfrac{1}{2}.S_{ABCD}\)
Vì hình MNPQ nằm trong hình thang ABCD nên diện tích MNPQ < diện tích ABCD
ủa, hỏi thế còn hỏi :vì hình thang MNPQ nằm trong hình thang ABCD, cho nên ABCD > MNPQ
a: \(S_{BNDA}=\dfrac{1}{2}\cdot\left(BN+AD\right)\cdot AB=\dfrac{1}{2}\cdot20\cdot\left(10+20\right)=30\cdot10=300\left(cm^2\right)\)
b: Xét ΔMAD vuông tại A và ΔNBA vuông tại B có
MA=NB
AD=BA
=>ΔMAD=ΔNBA
=>góc AMD=góc BNA
=>góc DAN+góc ADM=90 độ
=>DM vuông góc AN
Vì AM<AD nên MO<DO
\(S_{ADN}=\dfrac{1}{2}\cdot DO\cdot AN;S_{AMN}=\dfrac{1}{2}\cdot MO\cdot AN\)
mà DO>MO
nên \(S_{ADN}>S_{AMN}\)
=>\(S_{DON}>S_{MON}\)
\(a,\) Ta có \(BH=HC=AE=EB=\dfrac{1}{2}AB=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot10=5\left(cm\right)\)
\(S_{BHDA}=S_{ABCD}-S_{CHD}=AD^2-\dfrac{1}{2}CD\cdot CH\\ =100-\dfrac{1}{2}\cdot10\cdot5=75\left(cm^2\right)\)
\(b,S_{AHD}=S_{BHDA}-S_{AHB}=75-\dfrac{1}{2}\cdot10\cdot5=50\left(cm^2\right)\\ S_{AHE}=S_{AHB}-S_{HBE}=25-\dfrac{1}{2}\cdot5\cdot5=\dfrac{25}{2}\left(cm^2\right)\\ \Rightarrow S_{AHD}>S_{AHE}\)
\(S_{AMD}=\frac{1}{2}\times S_{ABD}\)(chung đường cao hạ từ \(D\), \(AM=\frac{1}{2}\times AB\))
\(S_{AMQ}=\frac{1}{2}\times S_{AMD}\)(chung đường cao hạ từ \(M\), \(AQ=\frac{1}{2}\times AD\))
Suy ra \(S_{AMQ}=\frac{1}{2}\times\frac{1}{2}\times S_{ABD}=\frac{1}{4}\times S_{ABD}\)
Tương tự ta cũng có: \(S_{BMN}=\frac{1}{4}\times S_{BAC},S_{CNP}=\frac{1}{4}\times S_{CBD},S_{DPQ}=\frac{1}{4}\times S_{DAC}\)
Suy ra \(S_{AMQ}+S_{BMN}+S_{CNP}+S_{DPQ}=\frac{1}{4}\times\left(S_{ABD}+S_{BAC}+S_{CBD}+S_{DAC}\right)\)
\(=\frac{1}{4}\times\left[\left(S_{ABD}+S_{CBD}\right)+\left(S_{BAC}+S_{DAC}\right)\right]\)
\(=\frac{1}{4}\times\left(S_{ABCD}+S_{ABCD}\right)=\frac{1}{2}\times S_{ABCD}\)
Suy ra \(S_{MNPQ}=S_{ABCD}-\left(S_{AMQ}+S_{BMN}+S_{CNP}+S_{DPQ}\right)=S_{ABCD}-\frac{1}{2}\times S_{ABCD}=\frac{1}{2}\times S_{ABCD}\)