1. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
x^4.y^4 - z^4
(x+y+z)^2 - 4z^2
-1/9x^2 + 1/3xy - 1/4y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^3y^3+125\)
\(=\left(ay+5\right)\left(a^2y^2-5ay+25\right)\)
b) Ta có: \(8x^3-y^3-6xy\cdot\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy-6xy+y^2\right)\)
\(=\left(2x-y\right)^3\)
\(2x^2y^3-\frac{x}{4}-4y^6\)
đây là pt bậc 2 của y^3 , ta đặt y^3=z ta được
\(-\left(4z^2+\frac{2.2xz}{2}+\frac{x^2}{4}\right)+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left(2z+\frac{x}{2}\right)^2+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left\{\left(2x+\frac{x}{2}\right)^2-\left(\frac{x^2}{4}-\frac{x}{4}\right)\right\}\)
\(-\left\{\left(2x+\frac{x}{2}+\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\left(2x+\frac{x}{2}-\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\right\}\)
câu a sử dụng hdt số 3
cau b tach 4=2*2
cau c tach 9=3*3
cau d tach 1/4=1/2*1/2
Lời giải:
$x^4y^4-z^4=(x^2y^2)^2-(z^2)^2=(x^2y^2-z^2)(x^2y^2+z^2)$
$=(xy-z)(xy+z)(x^2y^2+z^2)$
$(x+y+z)^2-4z^2=(x+y+z)^2-(2z)^2=(x+y+z-2z)(x+y+z+2z)$
$=(x+y-z)(x+y+3z)$
$\frac{-1}{9}x^2+\frac{1}{3}xy-\frac{1}{4}y^2=\frac{-4x^2+12xy-9y^2}{36}$
$=-\frac{4x^2-12xy+9y^2}{36}=-\frac{(2x-3y)^2}{36}=-\left(\frac{2x-3y}{6}\right)^2$
Câu trả lời của cô quá đúng luôn đấy