K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x^2y^3-\frac{x}{4}-4y^6\)

đây là pt bậc 2 của y^3 , ta đặt y^3=z ta được

\(-\left(4z^2+\frac{2.2xz}{2}+\frac{x^2}{4}\right)+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)

\(-\left(2z+\frac{x}{2}\right)^2+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)

\(-\left\{\left(2x+\frac{x}{2}\right)^2-\left(\frac{x^2}{4}-\frac{x}{4}\right)\right\}\)

\(-\left\{\left(2x+\frac{x}{2}+\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\left(2x+\frac{x}{2}-\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\right\}\)

30 tháng 7 2018

b)  \(64x^3+1=\left(4x+1\right)\left(16x^2-4x+1\right)\)\

c) \(x^3y^6z^9-125=\left(xy^2z^3-5\right)\left(x^2y^4z^6+5xy^2z+25\right)\)

d)  \(27x^6-8x^3=x^3\left(27x^3-8\right)=x^3\left(3x-2\right)\left(9x^2+6x+4\right)\)

e)  \(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)

64x3 + 1

= ( 4x )3  +  1

= ( 4x + 1 ) ( 16x2 - 4x + 1 )

Hằng đẳng thức 6 : A3 + B3

27x6 - 8x3

= ( 3x2)3 + ( 2x )3

= ( 3x + 2x ) ( 9x2 - 6x + 4x2 )

HĐT 6

x6 - y6

= ( x2 )3 - ( y2 )3

= ( x2 - y2 ) ( x4 + x2y2 + y4 )

HĐT 7 : A3 - B3

x3y6z9 + 1

= ( xy2z3)3 + 1

= ( xy2z3 + 1 ) ( x2y4z6 + zy2z3 + 1 )

HĐT 6

8 tháng 10 2020

a) \(\left(x+2\right)^2+2\left(x^2-4\right)+\left(x-2\right)^2\)

\(=\left(x+2\right)^2+\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)

\(=\left(x+2\right)\left(x+2+x-2\right)+\left(x-2\right)\left(x+2+x-2\right)\)

\(=2x\left(x+2\right)+2x\left(x-2\right)\)

\(=2x\left(x+2+x-2\right)\)

\(=2x\cdot2x=4x^2\)

b) \(2x^2-2xy-4y^2\)

\(=\left(2x^2-4xy\right)+\left(2xy-4y^2\right)\)

\(=2x\left(x-2y\right)+2y\left(x-2y\right)\)

\(=\left(2x+2y\right)\left(x-2y\right)\)

\(=2\left(x+y\right)\left(x-2y\right)\)

8 tháng 10 2020

c) \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

d) \(4x\left(x-2y\right)-8y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(4x-8y\right)\)

\(=4\left(x-2y\right)\left(x-2y\right)\)

\(=4\left(x-2y\right)^2\)

\(=xy\left(x^2-3x+3y-y^2\right)\)

\(=xy\left[\left(x-y\right)\left(x+y\right)+3\left(x-y\right)\right]\)

\(=xy\left(x-y\right)\left(x+y+3\right)\)

\(Ht\)

nếu sai cho mik xl vì mik chx thành thục cái này

13 tháng 9 2020

a) 4xn+2 + 8xn = 4xn( x2 + 2 )

b) ( 4x - 8 )( x2 + 6 ) - ( x - 2 )( x + 7 ) - 10 + 5x

= 4( x - 2 )( x2 + 6 ) - ( x - 2 )( x + 7 ) + 5( x - 2 )

= ( x - 2 )[ 4( x2 + 6 ) - ( x + 7 ) + 5 ]

= ( x - 2 )( 4x2 + 24 - x - 7 + 5 )

= ( x - 2 )( 4x2 - x + 22)

14 tháng 10 2020

a) \(9\left(2x-3\right)^2-4\left(x+1\right)^2\)

\(=\left[3\left(2x-3\right)-2\left(x+1\right)\right]\left[3\left(2x-3\right)+2\left(x+1\right)\right]\)

\(=\left(6x-9-2x-2\right)\left(6x-9+2x+2\right)\)

\(=\left(4x-11\right)\left(8x-7\right)\)

b) \(\left(x^2+4y^2-20\right)-16\left(xy-4\right)^2\)

\(=\left[\left(x^2-4xy+4y^2\right)-4\right]\left[\left(x^2+4xy+4y^2\right)-36\right]\)

\(=\left[\left(x-2y\right)^2-4\right]\left[\left(x+2y\right)^2-36\right]\)

\(=\left(x-2y-2\right)\left(x-2y+2\right)\left(x+2y-6\right)\left(x+2y+6\right)\)

14 tháng 10 2020

a. 9 ( 2x - 3 )2 - 4 ( x + 1 )2

= [ 3 ( 2x - 3 ) ]2 - [ 2 ( x + 1 ) ]2

= [ 3 ( 2x - 3 ) - 2 ( x + 1 ) ] [ 3 ( 2x - 3 ) + 2 ( x + 1 ) ]

= ( 6x - 9 - 2x - 2 ) ( 6x - 9 + 2x + 2 )

= ( 4x - 11 ) ( 8x - 7 )

b. ( x2 + 4y2 - 20 )2 - 16 ( xy - 4 )2

= ( x2 + 4y2 - 20 )2 - [ 4 ( xy - 4 ) ]2

= [ x2 + 4y2 - 20 - 4 ( xy - 4 ) ] [ x2 + 4y2 - 20 + 4 ( xy - 4 ) ]

= ( x2 + 4y2 - 20 - 4xy + 16 ) ( x2 + 4y2 - 20 + 4xy - 16 )

 = ( x2 + 4y2 - 4xy - 4 ) ( x2 + 4y2 + 4xy - 36 )

= [ ( x - 2y )2 - 22 ] [ ( x + 2y )2 - 62 ]

= ( x - 2y - 2 ) ( x - 2y + 2 ) ( x + 2y - 6 ) ( x + 2y + 6 )

13 tháng 9 2020

a) Ta có: \(4x\left(2y-z\right)+7y\left(z-2y\right)\)

        \(=4x\left(2y-z\right)-7y\left(2y-z\right)\)

        \(=\left(4x-7y\right)\left(2y-z\right)\)

13 tháng 9 2020

b) Ta có: \(2x\left(x+3\right)+\left(3+x\right)\)

        \(=\left(2x+1\right)\left(x+3\right)\)