cho 2 số a,b thỏa mãn a+b khác 0 . chứng minh rằng : a^2+b^2+((ab+1)/(a+b)) lớn hơn hoặc bằng 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giai
TS + 2 và - 2/(a-b)
SD BĐT Cô si => đpcm
"=" a = (\(\frac{\sqrt{3}+1}{\sqrt{2}}\)) ; b = \(\frac{\sqrt{3}\text{-}1}{\sqrt{2}}\) và ngược lại
\(ab+1\le b\Rightarrow a+\dfrac{1}{b}\le1\)
Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x+y\le1\)
Gọi vế trái của BĐT cần chứng minh là P:
\(P=x+\dfrac{1}{x^2}+y+\dfrac{1}{y^2}=\left(\dfrac{1}{x^2}+8x+8x\right)+\left(\dfrac{1}{y^2}+8y+8y\right)-15\left(x+y\right)\)
\(P\ge3\sqrt[3]{\dfrac{64x^2}{x^2}}+3\sqrt[3]{\dfrac{64y^2}{y^2}}-15.1=9\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) hay \(\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)
\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
\(\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\)
\(\ge\frac{\left(a+b+\frac{4}{a+b}\right)^2}{2}\)
\(=\frac{25}{2}\)
tại a=b=1/2
thêm ít cách
Cách 1:
Áp dụng BĐT bunhiacopxki ta được:
\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]\left(1^2+1^2\right)\ge\left[\left(a+\frac{1}{b}\right)+\left(b+\frac{1}{a}\right)\right]^2\)
\(\Leftrightarrow\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge\left(1+\frac{1}{a}+\frac{1}{b}\right)^2\)(1)
Ta có:\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)( tự CM nha )
ÁP dụng BĐT AM-GM ta có:
\(\sqrt{ab}\le\frac{a+b}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge4\)(2)
Thay (2) vào (1) ta được:
\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge25\)
\(\Rightarrow\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{25}{2}\left(đpcm\right)\)
Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Cách 2:
Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
Ta có: \(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\)
\(=a^2+\frac{2a}{b}+\frac{1}{16b^2}+\frac{15}{16b^2}+b^2+\frac{2b}{a}+\frac{1}{16a^2}+\frac{15}{16a^2}\)
\(=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\left(\frac{2a}{b}+\frac{2b}{a}\right)+\left(\frac{15}{16b^2}+\frac{15}{16a^2}\right)\)
ÁP dụng BĐT AM-GM ta có:
\(a^2+\frac{1}{16a^2}\ge2\sqrt{a^2.\frac{1}{16a^2}}\ge\frac{1}{2}\)(3)
\(b^2+\frac{1}{16b^2}\ge2\sqrt{b^2.\frac{1}{16b^2}}\ge\frac{1}{2}\)(4)
\(\frac{2a}{b}+\frac{2b}{a}\ge2\sqrt{\frac{2a}{b}.\frac{2b}{a}}\ge4\)(5)
\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge2\sqrt{\frac{15.15}{16.16a^2b^2}}=\frac{15}{8ab}\)(1)
ÁP dụng BĐT AM-GM ta có:
\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)(2)
Thay (2) vào (1) ta được:
\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge\frac{15}{2}\)(6)
Cộng (3)+(4)+(5)+(6) ta được:
\(P\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{2}+4=\frac{25}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Cách 3:Làm tắt thui ạ
Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\ge2ab+\frac{2}{ab}+4\)
\(P\ge2\left(ab+\frac{1}{ab}\right)+4\)
\(P\ge2\left(ab+\frac{1}{16ab}+\frac{15}{16ab}\right)+4\)
giống cách 2 rồi làm nốt
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}\)
\(=1-\dfrac{\left(ab-1\right)\left(ab+1\right)}{\left(ab+1\right)^2}=1-\dfrac{ab-1}{ab+1}=\dfrac{2}{ab+1}\) (đpcm)
Dấu "=" xảy ra khi \(a=b\)
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
\(\Rightarrow\left(\dfrac{1}{1+a^2}-\dfrac{1}{1+ab}\right)+\left(\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\right)\ge0\)
\(\Rightarrow\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Rightarrow\dfrac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Rightarrow\dfrac{a\left(b-a\right)\left(1+b^2\right)+b\left(a-b\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Rightarrow\dfrac{\left(b-a\right)\left(a+ab^2\right)-\left(b-a\right)\left(b+a^2b\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Rightarrow\dfrac{\left(b-a\right)\left(-\left(b-a\right)+ab\left(b-a\right)\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Rightarrow\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\) (luôn đúng vì \(ab\ge1\))
Hehe
1) Áp dụng hằng bất đẳng thức số 1: (a-b)^2>=0 với mọi a,b
=> a^2- 2ab+ b^2>= 0 với mọi a,b
=> a^2+2ab+ b^2>= 4ab với a,b>0
=> (a+b)^2> 4ab với a,b>0
=> a+b>= \(2\sqrt{ab}\)
Dấu = xảy ra <=> a-b=0 <=> a= b
Cái này là bất đẳng thức cô- si. lớp 8 được học rồi mà :D
2) Chắc thiếu đề :D
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)