K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

Tao nói thật nhé Mày là cái đồ óc chó mất dạy

24 tháng 7 2017

Sao bạn lại chửi bạn ấy?

16 tháng 8 2016

Bình 2 phương \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\) đc

\(\sqrt{\left(40+2\right)^2}=42\)

\(\left(\sqrt{40}+\sqrt{2}\right)^2=40+2+2\sqrt{40\cdot2}=42+2\sqrt{80}\)

Ta thấy:\(42+2\sqrt{80}>42\)

\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)

10 tháng 6 2017

\(\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7.\) (1)

\(\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7.\) (2)

Từ (1) và (2) suy ra \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}.\)

11 tháng 8 2015

Dễ

Bình phương cả 2 vế ta đc

42+2 và 40+2+2.\(4\sqrt{5}\)

42+2 và 42+2.\(4\sqrt{5}\)

Ta thấy \(4\sqrt{5}\)  >2

Suy ra 42+2<42+2.\(4\sqrt{5}\)

=>\(\sqrt{42+2}

11 tháng 8 2015

Ta có:\(\left(\sqrt{42+2}\right)^2=44\)(1)

\(\left(\sqrt{40}+\sqrt{2}\right)^2=44+2\sqrt{80}\)(2)

Do (1)<(2)

=>\(\sqrt{42+2}

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:

a.

$\sqrt{8}+\sqrt{15}+1<\sqrt{9}+\sqrt{16}+1=3+4+1=8=\sqrt{64}< \sqrt{65}$

$\Rightarrow \sqrt{8}+\sqrt{15}< \sqrt{65}-1$
b.

$(2\sqrt{3}+6\sqrt{2})^2=84+24\sqrt{6}< 84+24\sqrt{9}< 169$

$\Rightarrow 2\sqrt{3}+6\sqrt{2}< 13$

$\Rightarrow \frac{13-2\sqrt{3}}{6}> \sqrt{2}$

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

15 tháng 11 2017

Ta có : \(\sqrt{40}>\sqrt{36}=6\)

\(\sqrt{2}>\sqrt{1}=1\)

\(\Rightarrow\sqrt{40}+\sqrt{2}>1+6=7=\sqrt{49}\)

Ta lại có : \(\sqrt{40+2}=\sqrt{42}\)

Vì \(\sqrt{49}>\sqrt{42}\)

\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)

15 tháng 11 2017

có bạn nào lm khác khác sbt k

29 tháng 1 2022

a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)

\(\sqrt{6}< \sqrt{6,25}=2,5\)

\(\sqrt{12}< \sqrt{12,25}=3,5\)

\(\sqrt{20}< \sqrt{20,25}=4,5\)

=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)

Vậy P < 12

30 tháng 1 2022

Answer:

ý a, tham khảo bài làm của @xyzquynhdi

\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)

\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)

27 tháng 10 2016

Ta thấy:

\(\sqrt{40+2}< \sqrt{49}< 7\) (1)

\(\sqrt{40}>\sqrt{36}>6\) (2)

\(\sqrt{2}>\sqrt{1}>1\) (3)

Từ (2) và (3)

\(\sqrt{40}+\sqrt{2}>6+1>7\) (4)

Từ (1) và (4)

\(\Rightarrow\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)

Vậy \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)

2 tháng 11 2016

- Cảm ơn bạn nhiều =))