K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

\(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\cdot\cdot\frac{2016^2-1}{2016^2}=\frac{1.3}{2.3}\cdot\frac{2.4}{3.3}\cdot\cdot\cdot\cdot\frac{2015.2017}{2016.2016}\)

\(=\frac{\left(1.2.3....2015\right).\left(3.4....2016.2017\right)}{\left(2.3....2016\right)\left(2.3......2015.2016\right)}=\frac{2017}{2.2016}=\frac{2017}{4032}\)

24 tháng 12 2018

Tổng quát:\(1-\frac{1}{1+2+......+n}=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}\)

\(=\frac{n^2-n+2n-2}{n\left(n+1\right)}=\frac{n\left(n-1\right)+2\left(n-1\right)}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\) với \(n\in\)N*

Thay x=2,x=3,..........,x=2018 vào ta có:

\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)......\left(1-\frac{1}{1+2+3+.....+2018}\right)=\frac{1.4}{2.3}.\frac{2.5}{3.4}.........\frac{2017.2020}{2018.2019}\)

\(=\frac{1.2.3......2017}{2.3.......2018}.\frac{4.5........2020}{3.4.......2019}=\frac{1}{2018}.\frac{2020}{3}=\frac{2020}{6054}=\frac{1010}{3027}\)

18 tháng 7 2016

Từ công thức:\(1+2+........+n=\frac{n.\left(n+1\right)}{2}\)

Cho \(n\in\)N*.CMR:\(\frac{1}{n}.\left(1+2+...+n\right)=\frac{n+1}{2}\)

Ta có:\(\frac{1}{n}.\left(1+2+......+n\right)=\frac{1}{n}.\frac{n\left(n+1\right)}{2}=\frac{n+1}{2}\)

Ta có:\(1+\frac{1}{2}\left(1+2\right)+......+\frac{1}{20}.\left(1+2+.....+20\right)\)

\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3.\left(3+1\right)}{2}+........+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)

\(=1+\frac{3}{2}+...............+\frac{21}{2}\)

\(=\frac{2+3+......+21}{2}\)

\(=\frac{230}{2}=165\)

14 tháng 8 2017

dễ mà bn

24 tháng 5 2017

(1-1/3).(1-1/5).(1-1/7).(1-1/9).(1-1/11).(1-1/13).(1-1/2).(1-1/4).(1-1/6).(1-1/8).(1-1/10)

=2/3.4/5.6/7.8/9.10/11.12/13.1/2.3/4.5/6.7/8.9/10

=8/15.48/63.120/143.3/8.35/48.9/10

=384/945.360/1144.315/480

=138240/1081080.315/480

=43545600/518918400=84/1001

24 tháng 5 2017

khó quá

16 tháng 7 2017

(a + 1)(a + 2)(a + 3)(a + 4) + 1
= (a2 + 4a + a + 4)(a2 + 3a + 2a + 6) + 1
= (a2 + 5a + 4)(a2 + 5a + 6) + 1 (1)
Đặt a2 + 5a + 5 = b
=> a2 + 5a + 4 = b - 1
     a2 + 5a + 6 = b + 1
(1) = (b - 1)(b + 1) + 1
     = b2 - 1 + 1
     = b2
     = (a2 + 5a + 5)2

16 tháng 7 2017

\(\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1=\left[\left(a+1\right).\left(a+4\right)\right].\left[\left(a+2\right).\left(a+3\right)\right]+1\)

\(=\left(a^2+4a+a+4\right).\left(a^2+2a+3a+6\right)+1=\left(a^2+5a+4\right).\left(a^2+5a+6\right)+1\)

Đặt :  \(a^2+5a+5=b\)   thì ta có :

\(\left(b-1\right).\left(b+1\right)+1=b^2-1+1=b^2\)

thay \(a^2+5a+5\)   vào   b . ta được :

\(b^2=\left(a^2+5a+5\right)^2\)

VẬy :  \(\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1=\left(a^2+5a+5\right)^2\)

20 tháng 7 2016

a.

\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{2016}-1\right)\left(\frac{1}{2017}-1\right)\)

\(=\left(-\frac{1}{2}\right)\times\left(-\frac{2}{3}\right)\times\left(-\frac{3}{4}\right)\times...\times\left(-\frac{2015}{2016}\right)\times\left(-\frac{2016}{2017}\right)\)

\(=\frac{1}{2017}\)

b.

\(\frac{2^{50}\times7^2+2^{50}\times7}{4^{26}\times112}=\frac{2^{50}\times\left(7^2+7\right)}{\left(2^2\right)^{26}\times112}=\frac{2^{50}\times\left(49+7\right)}{2^{52}\times2\times56}=\frac{56}{2^3\times56}=\frac{1}{8}\)

20 tháng 7 2016

a. (1/2-1).(1/3-1)(1/4-1). ... .(1/2017-1)=(-1/2)(-2/3)(-3/4). ... .(-2016/2017)

Vì dãy số có 2016 số hạng âm nên tích của chúng là một số dương.

Ta có:(-1/2)(-2/3)(-3/4). ... . (-2016/2017)=1/2017                                                        

19 tháng 12 2017

hello