Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\cdot\cdot\frac{2016^2-1}{2016^2}=\frac{1.3}{2.3}\cdot\frac{2.4}{3.3}\cdot\cdot\cdot\cdot\frac{2015.2017}{2016.2016}\)
\(=\frac{\left(1.2.3....2015\right).\left(3.4....2016.2017\right)}{\left(2.3....2016\right)\left(2.3......2015.2016\right)}=\frac{2017}{2.2016}=\frac{2017}{4032}\)
\(1+\frac{1}{2}.\left(1+2\right)+\)\(\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{16}.\left(1+2+3+...+16\right)\)
=\(\frac{2}{2}+\frac{3}{2}+\frac{6}{3}+...+\frac{136}{16}\)
=\(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{17}{2}\)
=\(\frac{2+3+4+5+6+...+17}{2}\)=\(\frac{152}{2}=76\)
Ta có:
\(1+\frac{1}{2}\left(1+2\right)+..........+\frac{1}{20}\left(1+2+3+.......+20\right)\)
\(=1+\frac{1}{2}\left(\frac{3.2}{2}\right)+\frac{1}{3}\left(\frac{4.3}{2}\right)+........+\frac{1}{20}\left(\frac{21.20}{2}\right)\)
\(=1+\frac{3}{2}+\frac{4}{2}+..........+\frac{21}{2}=\frac{2+3+4+........+21}{2}\)
\(=\frac{\frac{23.20}{2}}{2}=\frac{23.10}{2}=115\)
tôi chỉ bn nè muốn làm thì hẳng hok thuộc đề bài vừa hok thuộc vùa nghĩ về bài sẽ nhưng thế nào
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{20}.\frac{20.21}{2}=1+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}=1+\frac{24.19}{2}=229\)
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{20}.\left(1+2+...+20\right)\)
\(=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(3+1\right).3}{2}+...+\frac{1}{20}.\frac{\left(20+1\right).20}{2}\)
\(=1+\frac{1+2}{2}+\frac{1+3}{2}+...+\frac{20+1}{2}\)
\(=1+\frac{1}{2}.\left(1+2+1+3+...+20+1\right)\)
\(=1+\frac{1}{2}.\left[\left(1+1+...+1\right)+\left(1+2+3+...+20\right)\right]\)
\(=1+\frac{1}{2}.\left[20+\frac{\left(20+2\right).19}{2}\right]\)
\(=1+\frac{1}{2}.\left[20+\frac{22.19}{2}\right]\)
\(=1+\frac{1}{2}.\left[20+11.19\right]\)
\(=1+\frac{1}{2}.\left[20+209\right]\)
\(=1+\frac{1}{2}.229\)
\(=\frac{2}{2}+\frac{229}{2}\)
\(=\frac{231}{2}\)
Tham khảo nhé~
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+....+20\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+.....+\frac{1}{20}.20.21:2\)
\(=\frac{2}{2}+\frac{3}{2}+....+\frac{21}{2}\)
\(=\frac{2+3+.....+21}{2}=\frac{230}{2}=115\)
Từ công thức:\(1+2+........+n=\frac{n.\left(n+1\right)}{2}\)
Cho \(n\in\)N*.CMR:\(\frac{1}{n}.\left(1+2+...+n\right)=\frac{n+1}{2}\)
Ta có:\(\frac{1}{n}.\left(1+2+......+n\right)=\frac{1}{n}.\frac{n\left(n+1\right)}{2}=\frac{n+1}{2}\)
Ta có:\(1+\frac{1}{2}\left(1+2\right)+......+\frac{1}{20}.\left(1+2+.....+20\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3.\left(3+1\right)}{2}+........+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)
\(=1+\frac{3}{2}+...............+\frac{21}{2}\)
\(=\frac{2+3+......+21}{2}\)
\(=\frac{230}{2}=165\)